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There are many books on IPv6, but this is certainly the best I’ve read so far. Marc has managed to take a
wealth of material describing all aspects of the next generation of IP technology and turn it into a thoroughly
readable book. His approach in this book has both breadth of coverage and also careful attention to detail
that any network engineer or system administrator will appreciate. If Marc’s aim was to produce both a
learning resource and a reference book, then he has succeeded on both counts here. This book will be an
invaluable and reliable assistant if your task is to make IPv6 work in your network.
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Internet Protocol version 6 (IPv6) is ready, it works, and there is great momentum in migrating to
IPv6. Finally there is a book written by a world class engineer, Marc Blanchet, who has been in the
IPv6 trenches over the past 15 years - designing, building, deploying, utilizing, and managing IPv6
networks. It is that breadth of experience that makes Marc Blanchet’s Migrating to IPv6 an excellent
and insightful guide to IPv6. Migrating to IPv6 contains a wide variety of deployment examples
that detail how to apply IPv6 in real-world networks–fixed and mobile, as well as a skillful primer
focused on “how-to” deploy, utilize and use IPv6 in day-to-day network activities. There are numerous
complexities in bridging IPv6 networks to IPv4 networks. Migrating to IPv6 focuses on how to use
IPv6 in real-world intranet and Internet-wide applications and serves as an excellent resources on
managing the co-existence of IPv4 and IPv6 infrastructures.

Carl Williams
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KDDI R&D Labs

Migrating to IPv6 is a timely book because the tipping point of IPv6 usage is imminent as DOD
and the Agencies begin deploying network centric applications. With the need for end-to-end services
over a wide variety of fixed and mobile subnetworks, IPv6’s Flow Label, not found in the existing
IPv4 protocol, becomes an indispensable tool for facilitating an end-to-end Quality of Service (QOS).
In stark contrast to wide area networks having plenty of unused capacity to accommodate variable
traffic flows, the wireless networks, including tactical, must have the means to identify flows in which
to apply a QOS policy - and IPv6 offers the only solution. Thus, with growing agility and network-
centricity needs driven by DOD Transformation and Agencies’ adopting of Enterprise Architectures,
the need for IPv6 is evident. Marc Blanchet provides the network engineer a thorough description of
implementation issues, configuration options and troubleshooting advice. The rich use of illustrations
and configuration examples provides the reader an invaluable benefit. Accordingly, this book will
become a staple of networking engineers for years to come.

Bob Collet
Chief Engineer, VP of Engineering Transformation, Training and Logistics Group

Science Applications Corporation Inc

Forget the technical stuff, here is the real deal� � � IPv6 in all its parts and promise! Kudos to Blanchet
for writing a thoroughly IPv6 kind of book!!

Bob Fink, co-conspirator of the 6bone

Appréciation sur le livre Migration to IPv6 de Marc Blanchet

Ayant une longue expérience dans le monde pédagogique (ancien professeur en Université et dans des
Ecoles d’ingénieurs de télécommunications à Paris) et une longue expérience aussi bien dans l’industrie
des télécommunications que dans le monde des opérateurs, je dois reconnaître que Marc Banchet, à
travers cet excellent ouvrage Migration to IPv6, a réussi une formidable performance.

Trois ingrédients au moins étaient nécessaires pour réussir cette alchimie et Marc est parmi ces rares
spécialistes à en détenir le secret:

- une parfaite connaissance et maîtrise des normes et standards IPv6 pour être en mesure d’en tirer
l’essentiel et en proposer une reformulation simple et non simpliste au lecteur non averti. De ce point
de vue, Marc en tant que pionnier dans la standardisation IPv6 a toute l’envergure et l’épaisseur
scientifique. Car il faut bien reconnaître que les RFCs sont certes des “ouvres d’art technique” cependant
conçus par des artistes/experts pour des admirateurs/experts. Ce sont des fresques où le “pinceau
pédagogique” n’a presque pas droit de cité. Et pourtant, la “galerie” de l’IETF et la “salle IPv6”
en particulier, intéressent toute la société et l’économie basées sur l’information et la connaissance.
Dommage, il n’y a ni guide ni mode d’emploi! Marc, à sa manière, vient précisément par son ouvrage
combler ce déficit. C’est donc non seulement un énorme service qu’il rend à la communauté des



utilisateurs au sens large (étudiants, industriels, ingénieurs, opérateurs, entreprises, développeurs), mais
aussi à la communauté des normalisateurs elle-même!

- une expérience dans la mise au banc d’essai de ces RFCs sur IPv6 afin de rapprocher le monde des
standards du monde pré-industriel et pré-commercial à travers des implémentations et des développe-
ments de produits et services pour des utilisateurs potentiels. On passe ainsi de la théorie à la pratique.
Pour cela, une capacité et une expérience dans la connaissance des besoins de ces clients potentiels est
primordiale. Là encore, Marc en tant que fondateur de la société Hexago ciblée sur le produits IPv6,
a convaincu le marché des opérateurs télécoms et des entreprises que la migration vers IPv6, devenue
une nécessité, pouvait se faire via des produits fiables et sécurisés, disponible sur étagère et à des
coûts raisonnables. Toujours dans un souci d’aider l’utilisateur à toucher la réalité concrète d’IPv6,
Marc expose dans son ouvrage, “les marques de fabrique” et implémentations d’autres constructeurs.
C’est une réponse au besoin de diversité et donc d’interopérabilité critères cruciaux en tout cas pour
les grands opérateurs et grandes entreprises.

- un souci pointu de la pédagogie et un style. C’est la partie scénario et mise en scène de l’ouvrage.
Je dois dire que Marc a réussi cette épreuve oh combien difficile et épineuse et qui demande un
investissement considérable. C’est la partie tant redoutée par l’écrivain car elle le met face à face
avec son lecteur et donc à son jugement. Quand on lit l’ouvrage, on comprend très vite que Marc
a délibérément mis le lecteur au centre de ses préoccupations. C’est l’aboutissement entre autre de
l’investissement que Marc a fait pour la communauté IPv6 à travers ses tutoriaux et autres actions de
dissémination.

Le produit fini est un chef-d’ouvre. Bravo Marc et merci pour ce beau cadeau!

Tayeb Ben Meriem, August 2005

This book is one of the most comprehensive technology in depth books I have read over the many years
regarding IPv6. It provides a new view and perspective, relating the most recent IPv6 features and
capabilities to the reader, that will benefit the engineer, architect, technologist, or a network manager,
and is an important reference book for anyone that transitions to IPv6.

Jim Bound CTO,
IPv6 Forum/Chair North American IPv6 Task Force/HP Fellow

IPv6 will revolutionize IP networking over the next 10 years, and learning about its features and
deployment today will put anyone working in IT at significant advantage. Marc’s writing style is clear
and concise, and this an excellent book for every IT worker - network guru’s through engineering
management.

John Spence,
CTO, Native6
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Foreword

The premise of this book is that readers already have some idea about the important nature
of the Internet Protocol layer in the Internet and that there is some concern that version 4
of the Internet Protocol (IPv4) may need to be succeeded by a newer protocol that has a
larger complement of address space and additional features designed to match the evolving
requirements of applications of the Internet. What is most valuable about this volume is the
clarity and scope of information that the author brings to the table.

The original work on the Internet design began in 1973 and benefited from experience
with the predecessor to Internet, the Arpanet. The design of IPv4 took place over the period
from 1973 to 1978. It was the product of a recurring series of specifications, implementations
and tests that ultimately led to standardization of IPv4 in mid-1978. By the early 1990s it
was feared that the rate of consumption of IPv4 address space and the relative inefficiency of
its assignment would exhaust the resource within a few years. A crash program was initiated
to develop a new version with larger address space and a feature set that benefited from the
many years of experience with IPv4. There ensued a great deal of debate and many different
proposals. Ultimately, IPv6 was standardized.

The book you are about to read takes you through the concrete technology and issues
associated with the implementation of IPv6. What is important to recognize is that not all
the issues are fully resolved. Moreover, the use of this new protocol is unlikely to be entirely
independent of the existing and spreading IPv4 system. Indeed, it is expected that IPv4 will
support IPv6, for example, by providing tunnels through the IPv4 protocol space to link IPv6
layers of protocol.

A number of application programs may need to be revised to cope with IPv6 simply
because the syntax of Uniform Resource Locators (URLs), for example, allows for the use of
literal IPv4 and IPv6 addresses. This means that any program that processes URLs, including
browsers, must be prepared to parse IPv6 addresses rendered as a series of hexadecimal
digits. Here is an example of the variability of IPv6 address representations that must be
parsed:

2001 �0000 �1234 �0000 �0000 �C1C0 �ABCD �0876

can be represented as:

2001 �0000 �1234 �0000 �0000 �c1c0 �abcd �0876
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which can be compressed to:

2001 �0 �1234 �0 �0 �c1c0 �abcd �876

which can be further compressed to:

2001 �0 �1234 ��c1c0 �abcd �876

All of these representations are equivalent and must be treated that way by the programs
that reference them.

IPv6 offers a number of other features including a “flow ID” whose function has not yet
been fully determined but that adds the potential to treat sequences of otherwise independent
packets with a common priority or service class, even if they belong to different applications.

IPv6 has also been designed to be easier to parse in the sense that the header is kept simple
in structure and that contributes to the utility of the new packet format when processing real-
time traffic flowing through the routers. It is also anticipated that mobility can be supported
more conveniently under IPv6 if the 128 bit address field can be treated as a two-part address.
The prefix would be used to route the IPv6 packet to a target network and the rest would be
used to deliver to a target within that network. This is not terribly different than the present
handling of IPv4 addresses as having two parts, a network part and a host part, the former
reflected in the so-called subnet mask that says which part of the IPv4 address references
the target network.

IPv6 also specifies that if one party wishes to enter an encrypted mode of communication
(with IPSEC) the other party is obliged to support this. That requirement is not mandatory
in the IPv4 space.

The major benefit that IPv6 confers is a vastly larger end-to-end address space within
which to operate. Many experts predict that there will be billions of terminal devices on the
Internet, perhaps as many as 100 per user. The vast IPv6 address space should allow for
sufficient space for these “Internet-enabled” devices for many years, if not decades, to come.

None of these benefits will be obtained without a substantial effort requiring clarity of
thought, determination, persistence and planning. The transitional introduction of IPv6 will
take place over a period of years if not decades. Consequently, it is vital for a wide range of
participants to have awareness of the specifics of IPv6 and what it will mean to fully support
it and make it inter-work with IPv4 or at least make applications running either or both able
to work with each other.

It may prove to be the case that the so-called Network Address Translation (NAT) devices
will end up being instruments for the introduction of IPv6 into the normal Internet operation.
One could use NAT methods to map from IPv6 to IPv4 at need. It remains to be seen how
well this works in practice but there can be little serious disputing of the major premise: that
IPv6 will surely have a critical role to play in the expansion of the Internet.

As this book goes to press, IPv6 is in deployment especially in Asia and the Pacific
Rim where internauts have taken an aggressive posture with regard to IPv6 implementation
and deployment. The Regional Internet Registries, working cooperatively as the Number
Resource Organization and in concert with the Internet Corporation for Assigned Names and
Numbers, are moving ahead with new global IPv6 allocation rules. Consumer equipment
makers are starting to think through the use of IPv6 for mobiles, set top boxes and other
devices that are produced in large numbers and need to be on the Internet.
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Mobility has become a touchstone for Internet evolution as more users access the Internet
in untethered fashion. The ability to support mobility and portability (episodic re-connection
with the Internet) will be a premium capability for many users.

ISPs still have much to do to integrate IPv6 into their network management systems,
order entry, provisioning, billing and application support services. For the most part, the host
and router vendors have implemented IPv6 capability but much testing is needed to assure
inter-working of many implementations. The University of New Hampshire has a major
testing facility and MCI has recently linked that to its MAE system of Internet exchanges
to support easy interconnection and exchange with the UNH site. The IPv6 Forum and its
various regional counterparts, such as the North American V6 Task Force (NAV6TF) are
hard at work focusing on the tasks ahead to accelerate deployment.

With the first decade of the 21st Century already half over, we need to move quickly
if we are to meet deadlines set for 2008 by the US Defense Department, for one. Other
government agencies, in the US and elsewhere, are equally keen to see the introduction of
IPv6 capability into their networks and generally available in the public Internet as well as
in virtual private networks of all kinds.

Vint Cerf
McLean, VA





Preface

Internet Protocol version 6 (IPv6) is a major improvement to IPv4, which currently faces
many challenging issues. Designed in the 1970s, IPv4 was initially deployed over a network
of few nodes. The 1990s saw its deployment to a large base of end-users, stretching its
capabilities. Since then, new applications with additional requirements such as mobility, tiny
server nodes, appliances, global reachability and end-to-end communications have (or soon
will be) deployed. While IPv6 is an important building block for these new applications, the
current deployed IPv4 network and applications will remain dominant for a significant part
of the period 2000–2010.

Purpose of this Book

This book attempts to give a comprehensive view of IPv6 and related protocols, from the
layers below IPv6 to the application and end-user layers. It takes the perspective that current
networks use IPv4 as the dominant networking protocol. The assumption is that IPv6 will
be deployed together with current IPv4 networks, so that network engineering will be taking
into consideration both protocols.

To make learning for the reader more efficient, the book describes IPv6 by comparing it
with IPv4, without reintroducing IPv4. Therefore, the reader is assumed to have minimum
familiarity with IPv4. The emphasis is on deploying IPv6 in current IPv4 networks, with
case studies and examples.

Hands-on examples on major implementations of hosts and routers are provided to give
practical experience for the reader.

In summary, this book provides the reader with a comprehensive view and understanding
of IPv6, given that the reader is familiar with IPv4 and that most current networks are
IPv4-dominant.

Writing Style

The raw information about IPv6 is in the Internet Engineering Task Force (IETF) Request For
Comments (RFC) documents. These documents describe the standards from an implementer
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point of view. Many (if not most) IPv6 books are written by following the order and the
depth of the RFCs. However, because RFCs are numerous and difficult to read for a beginner
who is not an IP stack programmer, so are the books based on the RFCs.

Top-down Approach

This book is structured differently and takes a top-down approach. A significant length of
time was taken to order the IPv6 topics by their relevance, for the benefit of the reader.
The concepts are presented first, and then their implementations, like the bits in the packets.
Sometimes, even the bits are not presented in the book. For example, instead of describing
the exact location of some option of the neighbor discovery protocol in the IPv6 packet,
the book describes why and what the option is for, leaving the bit location in the RFCs
for the implementer. However, important bits are shown, such as the packet header and the
addressing structure, the foundations of IPv6.

RFCs are exhaustive in describing all bits of a specific protocol. Often, the bits in an RFC
describe multiple uses of the protocol. For example, the neighbor discovery protocol is used
for finding the neighbors on a link as well as autoconfiguring a node. In this book, these
two functions are described in different chapters, so the reader learns one function at a time
and more logically.

Saving your Time

A ‘direct to the point’ writing style is used. I care about the precious time you have invested to
read this book. So I have tried to save you time and give you a direct and clear understanding
of the topics while not omitting to clarify where needed.

A Learning as well as a Reference Book

One goal is to provide both a learning and reference book simultaneously. After reading the
book, my personal goal is that you keep it around as good reference material when you work
on IPv6. This is challenging, and I hope to have succeeded.

The reference function of the book is achieved in many ways. The back cover contains a
reference card with the key data structures and packet formats. Throughout the book, great
effort is made to summarize topics in table or graphical form to help you browse the book
at a later date, giving fast access to information. Practical hints as well as key points are
also provided in a formatted box. References and Further Reading are put at the end of each
chapter.

Modular

Each chapter is as self-contained as possible. Even if the recommended order of reading is
to follow the order of chapters, topics are cross-referenced to help you read the chapters
in any order while being able to look back for necessary information in previous chapters.
Hypertext used on the Web is somewhat duplicated here with a lot of cross-references.
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Practical and Hands-on

Theory is always better understood with a practical example. Most chapters contain generic
examples of the topics discussed, as well as major implementation configuration examples
at the end of the chapter.

Audience

Any computer or networking professional interested in IPv6 is the primary target of this
book. Computer and network users who are curious about technology will also find it of
interest. Managers involved in networking technologies will get a good understanding of
IPv6. The book is written so that details and examples can be skipped while not affecting
the overall understanding of IPv6.

IPv4 Knowledge

The reader should have basic IPv4 knowledge. Since IP is horizontal and is used by a wide
variety of upper protocols and functions, such as applications, security, mobility and routing,
introductory material is given for less common protocols. For example, mobileIP is described
in general and then followed by IPv6 mobility specifics. In general, basic IPv4 functionality
is described at a minimum level.

Terminology

Accurate definitions of words are vital for complete understanding. Since IPv6 introduces
some new words and some additional meanings to existing words, Table P.1 defines some
of the words used in this book.

For easier reading, the word ‘IPv6’ is explicit everywhere in the book unless specifically
stated. In which case when ‘IP’ is used, it means that any version of IP and ‘IPv4’ is specific
to that version.

Implementations

Examples of configurations and commands are given for major implementations of hosts
and routers. The versions used in this book are listed in Table P.2. Unless stated, only
the out-of-box versions, without any additional packages installed, have been used for the
examples.

Since OpenBSD, NetBSD and FreeBSD share the same IPv6 code base, the examples for
FreeBSD usually apply to the OpenBSD and NetBSD. MacOS X/Darwin being a derivative
of FreeBSD, the examples of FreeBSD often apply to MacOS X. This common IPv6 code
comes from the Kame Japanese project, which is described as the best IPv6 stack available.
When FreeBSD is used in this book to describe some IPv6 behavior it is, in fact, the Kame
code. The behavior should be very similar or identical on the other Kame platforms.

Linux has many distributions. IPv6 is yet to be fully normalized in the Linux distributions.
The examples are based on RedHat 8.0 Linux distribution, which is applicable to the other
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Table P.1 Definitions

Word Definition

datagram ‘The unit of transmission in the network layer (such as IP). A datagram may be
encapsulated in one or more packets passed to the data link layer.’ [RFC1661]

packet ‘The basic unit of encapsulation, which is passed across the interface between
the network layer and the data link layer. A packet is usually mapped to
a frame; the exceptions are when data link layer fragmentation is being
performed, or when multiple packets are incorporated into a single frame.’
[RFC1661]. In most cases, a datagram and a packet are identical. This book
uses the word datagram in the generic sense and packet when there is a need
to identify specifically the datagram.

frame ‘The unit of transmission at the data link layer. A frame may include a header
and/or a trailer, along with some number of units of data.’ [RFC1661]

node any IP device: host, appliance, router, server, etc.
IP Internet Protocol. When the word IP is used, it means IPv4 or IPv6.
Payload Data part, after the header, of a datagram.
Intermediate nodes Any IP forwarding device in a path between the source and the destination:

router or firewall.
Forwarding node An IP forwarding device, usually a router.
Link ‘A communication facility or medium over which nodes can communicate at

the link layer.’ [RFC2460]. Similar to subnet, vlan or broadcast domain. In
IPv6, many prefixes can be used on the same link, which could be considered
different subnets at the IP layer.

Prefix Leftmost part of an IP address, used to describe a ‘subnet mask’, a route or
an address range.

Table P.2 Versions of implementations used

Implementation Version

Cisco IOS 12.2(13)T
FreeBSD 5.2
Hexago HexOS 3.0
Juniper JunOS 5.5
Linux RedHat 8.0
Microsoft Windows XP-SP1
Sun Solaris 9
Zebra 0.93b

distributions. The Japanese USAGI project1 is making a common IPv6 code for all Linux
platforms.

The examples are given at the end of each chapter, for the topic discussed in that chapter.
The intent is to give a very good start for a user on the implementations. The reader should
refer to the implementation documentation for complete information.

1 Kame means turtle in Japanese. USAGI, a similar project with similar goals, also comes from Japan and means
rabbit.
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Conventions used

A ‘<name>’ is to be replaced by the actual value, depending on the context.
The Courier font is used for typed characters in commands or text files.
RFCs and Internet-drafts are IETF documents and can be found at the IETF Web

site (http://www.ietf.org) or at various mirror sites. This book’s Web site (http://www.
ipv6book.ca) also makes these documents and a search engine available. Internet-drafts have
version numbers in the file name (e.g., draft-ietf-ipv6-addr-arch-08.txt) and usually disappear
after six months. To find the Internet-draft, one can try to find the most recent version by
incrementing the value of the version. Approved drafts are published as RFCs.

Comments and Errata

I’ve been involved in IPv6 since 1995, when it started to take form. Since then, I’ve been
using it, implementing it, consulting for providers and organizations, writing white papers,
and giving tutorials both at conferences and privately. I also co-authored the ‘Implementing
IPv6 Networks’ Cisco course. This book is the result of many years’ work on IPv6 and I
hope to share this knowledge and practical experience with you in the most efficient way
through this book. I hope you will enjoy the book.

Together with the editor, significant time has been spent to guarantee the quality. However,
nothing is perfect. I will be very pleased to receive any comments on this book. Please send
your comments and suggestions to author@ipv6book.ca. Any future revisions of this book
will take into account your comments.

Book Web Site

Since its initial design, IPv6 has evolved; some features have been removed or deprecated.
Keeping in mind that some of these features might still be discussed in other literature, the
deprecated features are not discussed in this book, to keep the main text flow seamless. Also,
some techniques are no longer relevant; some topics are for specific interests only, and new
topics will arise subsequent to the publishing of this book. For all these reasons, a Web site
has been created to complement this book. Here, you will find additional information such as:

• deprecated or less used protocols or specifications;
• more detailed coverage of some specific topics, such as some migration techniques;
• new features or considerations subsequent to the publishing of this book;
• complete bibliography;
• book errata.

The book Web site is located at http://www.ipv6book.ca.

Acknowledgments

First and most importantly, I would like to thank my family for giving me the support,
both in time and encouragement, to write and finish this book. Without the patience and
dedication of my wife and my daughter (and by extension to my young son) when I was
away writing the book, I would never have completed this book.



xxxii Preface

Many people contributed to this book as initial readers or reviewers. I’m very honored to
have had the following people dedicate time for reviewing the manuscript: Jun-ichiro itojun
Hagino, William Fernandez, Maton Sotomayor, John Spence, Hesham Soliman, Robert Fink,
Michel Py, David Greene, Jim Bound and Brian Carpenter. Finally, thanks to the team of
Wiley, namely Richard Davies, Andy Finch, Birgit Gruber, Sally Mortimore, Joanna Tootill
and Julie Ward for their patience, encouragement and support in publishing this book.



1
IPv6 Rationale and Features

Back in the 1970s, the Internet Protocol (IP) was designed upon certain assumptions and key
design decisions. After more than 25 years of deployment and usage, the resulting design
has been surprisingly appropriate to sustain the growth of the Internet that we have seen
and continue to see; not only the increase of the number of devices connected, but also of
the kinds of applications and usage we are inventing everyday. This sustainability is a very
impressive achievement of engineering excellence.

Despite the extraordinary sustainability of the current version (IPv4), however, it is suf-
fering and the Internet Protocol needs an important revision. This chapter describes why
we need a new version of the IP protocol (IPv6), by describing the Internet growth, the
use of techniques to temper the consequences of that growth and the trouble experienced in
deploying applications in current IPv4 networks. Some architecture considerations are then
discussed and new features needed in current and future networks presented.

Next, the work towards IPv6 at the IETF is shown along with the key features of IPv6.
Some milestones are also tabled. Finally, the IPv6 return on investment and drivers is
discussed.

1.1 Internet Growth

The origin of IPv6 work lay in the imminent exhaustion of address space and global routing
table growth; both could be summarized as Internet growth.

1.1.1 IPv4 Addressing

The Internet is a victim of his own success. No one in the 1970s could have predicted this
level of penetration into our lives.

Migrating to IPv6: A Practical Guide to Implementing IPv6 in Mobile and Fixed Networks Marc Blanchet
© 2006 John Wiley & Sons, Ltd
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In theory, 32 bits of IPv4 address space enables 4 billion hosts. Studies [RFC1715] have
shown that the effectiveness of an address space is far less. For example, RFC1715 defines a
H ratio as: H = log (number of objects using the network)/number of bits of the address space.
Based on some empirical studies of phone numbers and other addressing schemes, the author
concluded that this H ratio usually never reaches the value of 0.3, even with the most efficient
addressing schemes. An optimistic H ratio is 0.26 and a pessimistic one (for not very efficient
addressing schemes) is 0,14. At H = 0�26, with an addressing of 32 bits, the maximum
number of objects, in the case of IPv4 the number of reachable hosts, is 200 000 000.1 When
IPv4 Internet reaches 200 million reachable nodes, the IPv4 addresses will be exhausted.

Moreover, the IPv4 address space was designed with three classes (A, B and C)2 which
makes the address space usage even less efficient than with the optimistic H ratio. In August
1990 at Vancouver IETF, a study [Solensky, 1990] demonstrated the exhaustion of class B
address space by March 1994. Figure 1.1 shows the summary slide presented during that
IETF. This was an important wakeup call for the whole Internet engineering community.

Figure 1.1 Solensky slide on IPv4 address depletion dates

1 RFC1715 was also used as input to define the IPv6 address length to 128 bits.
2 D and E classes also exist but are not for unicast generic use.
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At that time, most organizations requesting an address space pretty easily obtained a class
B address block, since there was plenty of IPv4 address space. Assigning class C address
blocks to organizations was the first cure; it decreased the initial address consumption
problem but introduced more routes in the global routing table, therefore creating another
problem.

1.1.2 IPv4 Address Space Utilization

Let’s talk about the current IPv4 address space utilization. The IPv4 address space is 32 bits
wide. IANA allocates by 1/256th (0.4%) chunks to regional registries, which corresponds
to a /8 prefix length or to the leftmost number in an IPv4 address. Since the 224.X.X.X
to 239.X.X.X range is reserved for multicast addressing and the 240.X.X.X to 254.X.X.X
range is the experimental class E addressing, the total unicast available address space is of
223 /8 prefixes.

Figure 1.2 shows the cumulative number of /8 prefixes allocated since the beginning of
IPv4. At the end of 2004, there are 160 /8 prefixes allocated, representing 71% of the total
unicast available address space.

In 2003, 5 /8 prefixes were allocated by IANA to the regional registries. In 2004, 9 /8
prefixes were allocated (80% annual increase). In January 2005 alone, 3 /8 prefixes were
allocated. If every year after 2004, we are flattening the annual consumption to the 2004
number (9 /8 prefixes: i.e. 0% annual increase for the next 7 years), then Figure 1.3 shows
the exhaustion of IPv4 address space (223 /8 prefixes) by 2011.
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Figure 1.2 IPv4 cumulative allocated address space as of 2004–12
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Figure 1.3 Prediction of IPv4 allocated address space with flat annual consumption

If we are slightly more aggressive by increasing the annual consumption by 2 additional /8
prefixes every year after 2004, which results in an annual increase of 22%, then Figure 1.4
shows the exhaustion of IPv4 address space by 2009.

A 20% annual increase is pretty conservative, given that:

• large populations in China, India, Indonesia and Africa are not yet connected;
• world population net annual growth is 77 million people [Charnie, 2004];
• all kinds of electronic devices are increasingly being connected and always on;
• broadband connections incur permanent use of addresses instead of temporary addresses

when dialing up;
• each 3G cell phone consumes at least one IP address.

On the other hand, mitigating factors may delay this exhaustion:

• some class A are assigned but not used and therefore could be reclaimed;
• as in economics, the rarer something is, the more difficult it is to get and more it costs,

slowing the exhaustion but instead creating an address exchange market.

Despite this, the IPv4 address shortage is already happening, and severely, because

• organizations usually get just a few addresses (typically 4) for their whole network, limiting
the possibilities of deploying servers and applications;

• some broadband providers are giving private address spaces to their subscribers, which
means the subscriber computers cannot be reached from the Internet.
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Figure 1.4 Prediction of IPv4 allocated address space with incremented annual consumption

1.1.3 Network Address Translation

The most important change regarding IP addressing is the massive use of Network Address
Translation (NAT). The NAT functionality is usually implemented within the edge device
of a network, combined with firewalling. For example, most organization networks have a
firewall with NAT at the edge of their network and most home networks have a home router
which implements firewalling and NAT.

NAT maps multiple internal private IP addresses to a single external IP address.3 By
allocating new external port numbers for each connection, essentially this NAT mapping
process extends the address space by adding 16 bits of the port address space.

Figure 1.5 shows a basic network diagram of a private network with 2 computers
(N1 and N2) and a public network, such as the Internet with one server (S). The private
network uses private address space [RFC1918]. When internal nodes N1 and N2 connect to
server S, the source addresses (10.0.0.3, 10.0.0.4) of the packets are translated to the NAT
external IP address (192.0.2.2) when the packet is traversing the NAT. Server S receives
connections coming from the same single source address (192.0.2.2), as if it comes from
one single computer.

Table 1.1 shows how the detailed process works based on Figure 1.5. When the packet
traverses the NAT, the source IP address and port are translated to the external IP address
of the NAT and a new allocated port, respectively. For example, N1 source IP address
10.0.0.3 is translated to 192.0.2.2 and the source port 11111 is translated to the new allocated

3 NAT can map multiple internal addresses to more than one external address, but for simplication we are discussing
the most current used case: multiple internal to a single external address.
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Figure 1.5 NAT basic network diagram

Table 1.1 NAT changing the source IP address and port number

Flow Packet header while in private network Packet header while in public network

Source IP
address

Source
port
number

Destination
IP address

Destination
port

Source IP
address

Source
port
number

Destination
IP address

Destination
port

N1 to S 10.0.0.3 11111 192.0.2.1 80 192.0.2.2 32001 192.0.2.1 80
N2 to S 10.0.0.4 22222 192.0.2.1 80 192.0.2.2 32002 192.0.2.1 80

external port 32001 by the NAT. The mapping is kept inside the NAT for the lifetime of
the connection. If the connection is to get a Web page from the HTTP server S, then the
mapping will remain for the duration of the GET request. Any new connection, even to the
same server, creates a new mapping. Also, Table 1.1 shows another connection from N2.
From the S perspective, the two connections have the same source IP address, so they appear
to come from the same source.

This translation technique effectively hides the nodes on the private network and conserves
the public IP address space. The private address space [RFC1918] enables a very large
network having millions of nodes hidden behind a single IP address, given that the total
number of simultaneous connections is less than 65 K, since one connection takes one
external port and port numbers are 16 bits wide. The proliferation of NATs enabled the
whole Internet to continue growing at a much higher rate than the actual consumption rate
of the IPv4 address space.

However, NAT does not come free. When internal nodes are using application protocols
that negotiate the IP address and/or port numbers within the application protocol, then the
application in server S will receive the private address of the node, not the public translated
address by the NAT. The server application will then reply to the private address which
is not reachable and routable from the public network. Therefore, the application does not
work. For example, FTP [RFC959] with its separate control and data connections does not
work if a NAT is in the path between the server and the client.

To overcome this limitation, the NAT must understand each application protocol that
traverses it, inspect each application payload and modify the application payload to replace
the private source address and port number by the external source IP address and port number.
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This processing at the application layer is called an application level gateway (ALG). Every
NAT implementation includes a FTP ALG to enable this widely used protocol to traverse
NATs. An ALG does not work if the application payload is encrypted or integrity protected
by the application protocol or by a layer below such as IPsec.

Moreover, when the IP header itself is integrity protected, for instance with the IPsec AH
mode, then the translation of the source IP address and port number destroys the integrity
protection.

NAT and its side effects are discussed more throughout this book.

1.1.4 HTTP Version 1.1 Virtual Hosting

The simplicity of HTML and Web servers generated a lot of interest in the 1990s when
everyone wanted to have their own Web server. This resulted in a very rapid growth of
Web servers. Version 1.0 of the HyperText Transfert Protocol (HTTP) [RFC1945] required
each Web site to have a specific public IP address. To aggregate resources, many Web
sites are hosted on the same server, requiring the operating system to support multiple IPv4
address on the same interface, usually named secondary IP addresses.4 This increased the
consumption rate of IP addresses.

Version 1.1 [RFC2068] of HTTP supports virtual hosting, where multiple Web sites with
different domain names (http://www.example1.com, http://www.example2.com) are served
by the same IP address. A version 1.0 HTTP client sends only the path at the right of
the domain name (for example: path=/a/b.html of the full URL: http://www.example1.com/
a/b.html) to the HTTP server. A version 1.1 HTTP client sends the full hostname to the HTTP
server (for example: http://www.example1.com/a/b.html), enabling the HTTP server to for-
ward appropriately the request to the proper Web site handler. With version 1.1 of HTTP, the
Web server now needs only one IP address to serve a virtually unlimited number of Web sites.

However, with this virtual hosting technique, IP filtering based on the address of the
destination Web server is nearly impossible, since all Web sites share the same IP address.
The filtering has to be done at the application level, requiring filtering devices to open the
packet payload to inspect and parse the HTTP statements in order to identify the target Web
server, which creates more burden on security gateways.

Compared to HTTP version 1.0, HTTP version 1.1 conserves the public IP address space
by enabling virtual hosting.

In a typical enterprise scenario, the enterprise needs only two IP addresses: the external
address of the NAT hiding its internal network and one address for all its Web sites. This
created the defacto ISP practice to provide only four IPv4 addresses to organizations. The
bad side effect is that the organizations now have to justify the need for more than four IPv4
addresses, moving the burden of allocation and usage of the IPv4 address space to the organi-
zation. Does your organization have to justify the need for more than four telephone numbers?

1.1.5 Variable Length Subnet Mask

In organization networks, the original IPv4 design requires a single subnet mask throughout
the network. An address plan identifies the subnet mask by finding the largest possible

4 Secondary IP addresses were not supported on many OS at that time, which gave more headaches to network
managers who hosted many Web sites.
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number of hosts on a single subnet and using the according bit-level subnet mask. If the
largest number of hosts on a single subnet in a network is 65, then the network will have a
7 bits subnet mask �27 = 128 > 65�, which enables 128 hosts on each subnet. A subnet of
3 nodes in that network consumes 128 IPv4 addresses. A single subnet mask for the whole
network decreases the efficiency of the IP address utilization.

To make address plans less sparse, resulting in conservation of address space, the variable
length subnet mask technique (VLSM) [RFC1812] was introduced for routers and routing
protocols. With VLSM, the routing infrastructure can handle a specific subnet mask on each
subnet. Routing protocols such as the Routing Information Protocol (RIP) [RFC1058] had
to be updated to support VLSM.

1.1.6 Classless IPv4

Introduced to reduce the growth of the global routing table, the Classless Inter-Domain
Routing (CIDR) [RFC1519] converts the classful IPv4 address space into a classless address
space. In the classless model with CIDR, any network size is possible using any address
number. The A class (from 0.0.0.0 to 127.255.255.255 with 24 bits each), the B class
(from 128.0.0.0 to 191.255.255.255 with 16 bits each) and C classes (from 192.0.0.0 to
223.255.255.255 with 8 bits each) are no longer relevant. Therefore, the address consumption
rate is decreased since allocation will be more effective.

Owing to the variable size of network prefixes, the /n notation (often named CIDR
notation) after the prefix was introduced to make IP address writing notation shorter and more
efficient. For example, ‘/25’ in 192.0.2.0/25 identifies the number of significant leftmost bits
in the address. Therefore, ‘/25’ gives a 32−25 = 7 bits prefix range, which gives 27 = 128
addresses. ‘192.0.2.0/25’ defines the range of addresses between 192.0.2.0 and 192.0.2.127.
The CIDR notation is the only notation used to describe ranges or prefixes of IPv6 addresses
and is the one used throughout this book for both IPv4 and IPv6.

1.1.7 Provider-based Assignment and Aggregation of IPv4 Network
Prefixes

Since the beginning of IPv4, organizations had been requesting IPv4 address space directly
from IANA and IANA assigned a IPv4 address range of one class. This range was assigned
to this organization permanently. These assignments were not related to the topology of the
network, disabling any aggregation of the prefixes by a common provider. This is another
cause of the growth of the global routing table.

In 1994, the policy of assignments changed. The new policy enforces provider-based
assignments to the organizations. Now, IANA assigns blocks of addresses to regional reg-
istries (ARIN, RIPE, APNIC and others). Within their assigned blocks, regional registries
assign smaller blocks of addresses to providers, which in turn assign smaller blocks to
organizations. In this context, organization’s prefixes are aggregated at the provider level,
resulting in a more aggregated global routing table and decreased rate of growth of the table.
This aggregation also has the benefit of more stability in the routing table, since organiza-
tion’s prefixes are not specifically announced in the global routing table. Since the leaf of
the network (such as the link connecting the organization to the provider) is likely to be less



IPv6 Rationale and Features 9

stable, leaf announcements result in BGP updates in the routing table. On the other hand,
the links connecting providers to exchange points are likely to be more stable.

An important side effect of the provider-based assignments is that the address space
assigned to an organization is not owned by that organization but by the provider. If the
organization changes provider, the organization receives a different address space from the
new provider and will not be able to use the previously assigned address space anymore,
since it is owned by the previous provider. This results in a renumbering of its entire network.
Since IPv4 was not designed with mechanisms to facilitate renumbering, this situation results
in huge trouble and inconvenience for organizations. Since they are locked by the address
space of the provider and the cost of renumbering is high, the organization is locked to
the provider. To overcome this big issue, organizations started to limit the use of public
addresses to enable smoother change of providers. The limitation is accomplished by using
a NAT at the edge of the network and limiting the number of servers using global address
space.

1.1.8 Constrained Allocation Policy of IPv4 Addresses

To further conserve IPv4 addresss space, successive versions of IPv4 address allocation
policies and guidelines [RFC1466, RFC2050] were put in place by the IANA and the
registries. These policies had the following goals [RFC2050]:

• conservation of address space to maximize the lifetime of the IPv4 address space;
• hierarchical routing for routing scalability on the public Internet;
• public registry.

Policy RFC2050 allocates IPv4 addresses space in smaller chunks to providers in a slow-start
procedure. ISPs are asked to document the address assignments to the end organizations.
The result is a slower rate of consumption of the IPv4 address space.

1.1.9 Global Routing

Figure 1.6 [Huston, 2005] shows the size of the IPv4 BGP global routing table.
Despite the use of NAT, HTTP virtual hosting, VLSM, CIDR, provider-based aggregation

and constrained address allocations since the mid 1990s, the growth of the global routing
table has been mostly linear, while the slope is increasing in recent years. The growth, due
mainly to the increase of small prefixes (/24), comes from the growth of the Internet itself,
the use of multihoming and traffic engineering techniques using routing [Huston, 2001].

1.1.10 Summary of Internet Growth

Whatever metric one take and despite all the invented solutions mentioned above, Internet
growth is heading towards the exhaustion of IPv4 addresses in a few years and to ever
increasing large global routing tables. A major fix to these issues must be deployed soon
and IPv6 is the only solution currently worked out.

Let’s now take another perspective by discussing other current issues in IPv4 networks.
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Figure 1.6 IPv4 BGP Global Routing Table Size

1.2 Real Issues and Trouble with IPv4

The shortage of IPv4 addresses is responsible for many issues and trouble in IP deployments
today. Real world issues described in this section show the hidden costs of the lack of
IPv4 addresses and the lack of functionalities in IPv4 for the current and future use of IP
networking.

1.2.1 Deploying Voice over IP

Skype [Skype] is a Peer-to-Peer (P2P) Voice over IP(VoIP) application and network. The
Skype designers claim to traverse any NAT or firewalls to achieve P2P. Since the Skype
protocol is not publicly disclosed, researchers have analyzed the protocol and described the
process to traverse NAT and firewalls [Baset and Schulzrinne, 2004].

In a nutshell, a Skype client knows in advance some Skype gateways, named supernodes,
and discovers others that help (the client) to find its external IPv4 address. The authors of the
analysis think this technique is similar to STUN [RFC3489] and TURN [Rosenberg, 2004],
discussed more in Section 1.3.1. The client tries to connect to the gateways using UDP; if
unsuccessful, it tries TCP; if unsuccessful, it then tries TCP on the HTTP port (80); and if
unsuccessful, it tries TCP on the HTTPS port (443). Since HTTP ports are usually opened
for outgoing connections in most organization networks, Skype uses these ports as a last
resort to traverse the firewall. When this last resort does not work, Skype loops again twice
more and if still not successful, finally gives up.

In most cases, the voice traffic between the two VoIP peers goes through two other nodes,
named supernodes, as shown in Figure 1.17. This figure shows the Skype network where
small dots represents VoIP end-users. Supernodes are normal Skype nodes elected to be
intermediary nodes, shown as bigger dots in Figure 1.7.
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Figure 1.7 Skype overlay network

The rationale behind electing supernodes in the Skype network is to enable fully automated
NAT traversal without a specific network of servers. Any Skype node can be automatically
elected as supernode if the node has a public address and some available CPU resources.

True peer-to-peer is almost impossible on IPv4 networks because of the presence of NAT.
This Skype 4-nodes routing between the two peers through the supernodes obviously intro-
duces delay, jitter and less performance. Also, since the election process to be a supernode
is not managed by the user, a user bandwidth might be filled with the traffic of others, just
because its computer was elected as supernode on the Skype overlay network. As a claimed
peer-to-peer protocol, Skype is not a peer-to-peer protocol, not because of its authors fail-
ing to design a true peer-to-peer protocol, but because the deployed IPv4 networks disable
peer-to-peer applications.

This demonstrates how unpredictable it is for an application to get the needed basic
IP connections. It also demonstrates how the applications are involved in delivering basic
connections, which should be handled by lower layers such as IP and transport.

Owing to the current issues with IPv4, applications have become much more complex
just to reach other peers. The IP architecture was based on the end-to-end principle, where
the network will be ‘dumb’ and end nodes can be reachable directly and easily. Current
IPv4 networks have too much processing and break the end-to-end direct connectivity.
Skype smarts or similar will need to be implemented in all applications requiring end-to-end
connections, which makes applications complex, provokes latency in the application and
network, makes application fragile to any network change and makes the overall connectivity
unpredictable.
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For the same reasons, an industry leader and well-known developer of open-source soft-
ware stopped the development of a VoIP peer-to-peer application named SpeakFreely. Here
is a excerpt from his announcement:

The Internet of the near future will be something never contemplated when Speak Freely
was designed, inherently hostile to such peer-to-peer applications. I am not using the
phrase ‘peer to peer’ as a euphemism for ‘file sharing’ or other related activities, but in
its original architectural sense, where all hosts on the Internet were fundamentally equal.
Certainly, Internet connections differed in bandwidth, latency, and reliability, but apart
from those physical properties any machine connected to the Internet could act as a client,
server, or (in the case of datagram traffic such as Speak Freely audio) neither – simply a
peer of those with which it communicated. Any Internet host could provide any service to
any other and access services provided by them. New kinds of services could be invented
as required, subject only to compatibility with the higher level transport protocols (such
as TCP and UDP). Unfortunately, this era is coming to an end.

[Walker, 2004]

It is terrible that the well designed IP protocol that offered so much innovation in its first
20 years is now stopping innovation, because of the introduction of NAT in the network.

SIP [RFC3261] is the IETF standard protocol for VoIP. SIP was designed for a pure IP
network without NAT. It works fine only when no NAT is present between the peers. The
pervasive presence of NAT means that SIP and its related protocols such as RTP are not
deployable as in the current IPv4 networks with NAT dominance. These protocols have been
augmented by various NAT traversal techniques. However, none of these techniques take
care of all cases unless the audio path goes through a gateway, which disables the essence of
VoIP performance which is to carry voice over IP on the direct path between the two peers.

I’ve been using a SIP softphone with a VoIP provider on my laptop. This SIP software
implements most of the NAT traversal techniques. In many cases, VoIP calls just do not work.
This software shows me the following error message: ‘Login timed out! Contact Network
Admin.’ Very useful message! A few times, the error message was: ‘Cannot identify the
Cone NAT correctly’. Another very useful message for an end-user.

As a user, I have no clue what kind of NAT, firewall or other network devices are in the
path. So I called the VoIP provider technical support. As a technical person, I investigated
and discovered the situation prior to the support call, but I took the ‘dumb’ user hat when
calling technical support. After literally one and half hours of support over the phone (not the
VoIP one obviously, but a plain old one), I had escalated two levels of technical support. It
was suggested that I reinstall the SIP software and change the configuration of my operating
system, which I did to the point where they asked me to reinstall the whole operating system,
which I refused to do! 90 minutes of technical support, no good answer was given, the
service was not restored and I was a frustrated customer. Why? There was a symmetric NAT
in the path.5 This kind of NAT is not supported by the NAT traversal techniques used by
the SIP software. If most users of a VoIP deployment started calling the technical support
and spent 90 minutes each, the VoIP company would go bankcrupt pretty fast!

These few examples show that VoIP is difficult to deploy over IPv4 networks because of
NAT. True peer-to-peer is no longer possible. Innovation is hindered by current IP networks.

5 Various kind of NATs are discussed in the book Web site: http://www.ipv6book.ca.
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We need to restore this network to a good state in order to maintain innovation, user confidence
and good experience. IPv6 provides the features needed to deploy applications seamlessly.

1.2.2 Deploying IP Security

The IP protocol did not have any widespread security at the IP layer. Over time, security
was added at the application layers, such as the secure socket layer (SSL) for the Web. Right
now, we have similar and duplicated security functionality in several application protocols,
creating a whole set of new problems, such as multiple, different and incompatible key
management functions.

While discussing requirements of IPv6, the IETF decided to work on an IP security
layer, named IPsec [RFC2401], to protect the whole IP packet for authentication, integrity
protection and confidentiality. IPsec (see Chapter 13) is available for IPv4 as an option and
mandatory for IPv6. By protecting the IP layer, the application layers over IP do not usually
need additional protection.

However, the deployment of IPsec on current IPv4 networks have shown the difficulty of
protecting IP packets when NATs are in the path. IPsec6 protects the whole packet, so any
modification of the packet between the source and the destination violates the security of
the packet. NAT modifies addresses and port numbers of IP packets, therefore disabling the
full protection of the IP packet, and disabling full security deployment.

Since IPv6 does not need NAT, full end-to-end IP security is deployable without those issues.

1.2.3 Deploying Application Security

An enterprise has setup an e-commerce Web site with connection to its internal SQL database
located in its private network. The Web site server is reachable from the internet. As shown
in Figure 1.8, the connection from the Web server to the internal SQL database goes through
the firewall which also implements NAT.

The SQL connection protocol between the Web server and the database backend negotiates
IP addresses and port numbers within the protocol. So, by default, it does not traverse a NAT.
The NAT-firewall product supports this protocol by inspecting the exchange and replacing
the IP addresses and port numbers by the translated ones, within the application payload. This
makes NAT and the SQL connection work. However, the organization then wants to encrypt

NAT

SQL 
server WWW

Public
network

N1
Private
network

Figure 1.8 Backend database connection to Web site

6 More specifically the Authentication Header (AH) mode, see Chapter 13.
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the data in the Web to SQL connection to prevent any snooping of the confidential data. By
turning on encryption in the application protocol, the NAT-firewall is then unable to inspect
and replace the IP addresses. The SQL encrypted connection does not work across NATs.

NAT disables the use of security in application protocols.

1.2.4 Videoconferencing

A school board had to deliver a videoconferencing solution to help students in schools in
remote communities to have access to professors in cities. Any professor from any school
can give the course and any remote school class can attend the videocast. Remote students
interact with the professor as if they were in the physical class.

Figure 1.9 shows the network where videoconferencing stations are located in remote
networks. Multiple NATs are in the path between any combination of stations. The video
feed station can be in any class and all sites are actively participating in the videoconference.

The videoconferencing software did not work by default in this configuration, since all the
stations were hidden to the others by private address space. For any class, the teacher had to
make a request to the IT department one week in advance, so that the IT department could
configure a static mapping of addresses for all the NATs in the path and then configure the
videoconferencing stations to use this mapping. This manual process of the IT department
hindered the capability of the teachers to use the service as a commodity service. It is not
the fault of the IT department, it is the trouble caused by the NATs: the inability to deploy
and use applications.
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School board 
network

Figure 1.9 Videoconferencing with multiple NAT in remote networks
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Deploying IPv6 in this network solves the problem, since all nodes are reachable and
videoconferencing is seamlessly working in all cases. A transition mechanism7 can be used
to enable IPv6 in the whole network before a full upgrade becomes possible.

1.2.5 A Simple Web Server at Home

With digital cameras and powerful computers, people have a library of digital pictures on
home computers connected to a home network with broadband connectivity. They would
like to share these pictures with friends and family that could access them remotely from
the Internet. Available broadband bandwidth makes this possible.

Figure 1.10 shows a home network with the computer that has the picture library and runs
a Web server.

This Web server is not reachable from the Internet because it has a private address hidden
by the NAT function implemented in the home gateway. Therefore, friends cannot access
the pictures. To solve the issue, the home gateway is configured with a static mapping of
the external address to the internal address of the Web server for the HTTP port. If the
home network has multiple computers to be Web servers (such as parents and teenagers
Web servers), this mapping works only for a single computer. Moreover, it requires some IP
networking knowledge beyond most end-users. There is a good chance that you, the reader,
who has good IP networking knowledge, is being requested by the non-techie friends and
family to set up these devices! Right? Point taken?

As we can see, the bandwidth, the computer, the data and the software are all available to
make this simple application possible. What disables the application from actually working
is the NAT.

Home gateways have evolved into very complex devices these days. It is common to
receive a 200 page user’s manual, discussing a lot of complex IP configurations. A majority
of these pages and the overall complexity come from the NAT presence and its related issues.

By restoring reachability, IPv6 in this home network setup will make the application work
seamlessly.

1.2.6 Using Remote Procedure Calls

Remote procedure calls (RPC) are used for distributed computing, where applications devel-
opers have access to an application programming interface (API) to access services on remote
computers by a simple function call. RPC processes in the distributed network talk to each
other by exchanging their IP addresses and by dynamically allocating ports.

Internet

Home
gateway

Home
network

192.168.1.X

Figure 1.10 Home network

7 In this case the TSP tunnel broker, see Section 16.2.9.



16 Migrating to IPv6

When a NAT is in the path between the computers, RPC no longer works. Very complex
configurations prone to any changes in the network can overcome some of the simple setups,
but then do not scale well and maintain states in the network.

Distributed computing networks are difficult to deploy over IPv4: IPv6 deployment solves
this RPC problem right away.

1.2.7 Remote Management of Applications and Servers

Many organizations are outsourcing their IT services to a third party. This third party
organization usually sets up a network operations center (NOC) to manage remotely the
servers, networks and applications of its multiple customers. As shown in Figure 1.11, the
NOC is connected to the customer’s networks through private networks or the Internet.

However, many organizations have one or many NATs in their internal network. The
remote management station in the NOC cannot reach the servers behind NAT. One has to
define static translations on all the NATs to make this work, when possible. Even if they make
it happen, a lot of static configuration is introduced in the NAT network, where any fault NAT
will make the network unreachable by the NOC. The NOC is responsible for troubleshooting
and keeping the network running, while it has no tools to manage the network! The support
organization can then not deliver its service level agreement conditions such as 99.99%
uptime, since the NOC cannot manage the network. This has nothing to do with security
and firewalling, but rather lack of address space and the related presence of NAT.

Using IPv6 in this scenario solves the reachability issue. Moreover, it will enhance security
since in all paths, end-to-end security and end-to-border security can be established.

1.2.8 VPN Between Same Address Space

Many organizations, subsidiaries within an organization, divisions within an organization or
recently merged or acquired organizations have separate IT departements. For that matter,
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Figure 1.11 Remote management of servers in private networks
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Figure 1.12 VPN between same address spaces

they manage their own address space. In nearly all cases, each network uses the 10.X.X.X
private address space. When two or more of these networks are connected together, an
address collision happens.

Figure 1.12 shows a simple case of this situation. A VPN is created between the two
NATs, at the borders of each network. When N1 needs to reach the server S in the remote
network, it sends the packet to S address: 10.0.1.8. However, the packet never reaches S but
instead reaches N2 in the same network as N1.

To overcome this situation, one defines address views for each host available to the
other network, creating a large static map on both NATs (often called double NAT), not
dynamically managed as DNS and routing are good for. When a user calls the IT tech support
for a problem reaching the other side, it is very hard to troubleshoot because of this double
NAT process. This situation creates network management and support costs and does not
scale well. The alternative is to renumber one of the networks, entailing important work and
causing downtime on the network.

With its huge address space, IPv6 does not have these address collision issues.

1.2.9 Deploying Services in the Home Network

Figure 1.13 shows an example of a remote monitoring service in the home network, where
network cameras are placed in the home. The owner, while out of his home, wants to see
what is happening in the home using its PC or its graphical cell phone.

Home
network

192.168.1.X InternetHome
gateway

Figure 1.13 Video monitoring in a home network
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With multiple cameras in the home, there is no simple way to reach all of them from a device on
theInternet.Onewouldhave toconfigure thehomegatewaywithmultiplestaticport translations,
or to create a specific VPN to access the home network. The more services one has at home,
the more these tricks become painful. Many applications are related to sensors and appliances
in the home that are accessed or controlled from outside the home network.

With IPv6, these home services are straightforward to enable, manage and use, because
reachability is restored by the addressing.

1.2.10 Merging or Connecting Two Networks Together

When two organizations merge or connect their networks, their address spaces collide because
both usually use the same address space 10.X.X.X. Figure 1.14 shows such a situation.

This creates similar problems to the one discussed in Section 1.2.8. With a large address
space, IPv6 addressing in networks will not collide when networks connect or merge.

1.2.11 Large Networks

For some large corporate networks, given the non-optimized allocation of address space with
subnet masks, the private address space 10.X.X.X is just not sufficient for their numbering
[Hain, 2004]. As the networks expand, they need to have more address space. Many organiza-
tions are using non-allocated address space such as 1.X.X.X for their additional address space.
As we can see, large networks need more private address space than is available in IPv4.

On the other hand, IPv6 has sufficient public and private address space to support these
scenarios.

1.2.12 Address Plans and Secondary Addresses

An enterprise address plan identifies a subnet mask for each link, which establishes the
maximum number of nodes on that link. When more hosts than the maximum are put on
one link, a second prefix is used on that link. Figure 1.15 shows such a situation where the
initial prefix is 192.168.1.X/24. Among the computers on that link, N1 has 192.168.1.2 and
the router has 192.168.1.1.

N3

10.0.0.3

Private
network
10.0.0.X

Private
network
10.0.0.X

N2

?

N1

10.0.1.8

10.0.0.3

Figure 1.14 Merging two networks with the same address space
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192.168.1.2

192.168.2.1

192.168.2.2

N2

N1 192.168.1.1

Figure 1.15 Secondary address traffic

When the maximum number of nodes is reached, then another prefix (192.168.2.X/24) is
added on the link. The router now has an additional address, 192.168.2.1, and N2 is part of
the second prefix (192.168.2.2). For simpler network management, nodes do not participate
in routing. To send a packet to N2, N1 finds that N2 is not on the same link, given that
it does not have the same prefix. N1 sends the packet to its default router and the router
resends the packet on the same link to N2. So all communications between the two nodes are
duplicated on the same link, adding delay and decreasing the available bandwidth by half.

With virtually unlimited numbers of addresses for nodes on a link, IPv6 does not suffer
from this behavior.

1.2.13 Provider VPN Address Collisions

Nowadays, most organizations are using 10.0.0.0/8 address spaces inside their corporate
network. When a provider offers the VPN service to its enterprise customers, the routing
inside the VPN core carries many 10.0.0.0/8 routes originating from different networks, as
shown in Figure 1.16.

This address collision in the routing table makes the routing incoherent and exposes the
organization’s networks to others within the provider network. To overcome this problem, a
route distinguisher is added to the routing protocols to identify uniquely each organization
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Provider
network

Private
network
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Figure 1.16 Provider VPN address collision
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network inside the provider network. This is an example of extending the IPv4 address space
for a very specific need, which only solves that need, and does not help with other issues.
IPv6 does not have that problem because each network has a unique large address space.

1.2.14 Should IP Addresses be Free?

In many markets nowadays, providers are billing IPv4 addresses. For example, some broad-
band providers are asking a premium for more than one public IP address to the home
networks. This cost is a result of the lack of IPv4 address space and also the lack of func-
tionality in the IP framework to deliver a range of addresses to a large number of networks,
such as home networks. By restoring address space and providing prefix delegation methods,
IPv6 solves these issues and IPv6 addresses should be free. 8

1.2.15 Summary

Each example above indicates the costs and issues, often combined together, related to
IPv4 networks today. The mitigation techniques used to keep IPv4 up and running were
also discussed. This set is just a sample and many other instances exist. For each example,
a possible ‘workaround’ might exist, but these workarounds combined together create an
important network management problem.

Moreover, the end-to-end reachability is now lost, disabling innovative applications and
security to be deployed.

Many issues are related to the existence of NAT. Either we exacerbate the problem by
continuing to procrastinate, incurring more and more costs, or we solve the problem by
deploying IPv6. With the right transition tool, the deployment of IPv6 costs less than the
current visible and hidden costs of NAT.

1.3 Architectural Considerations

IP architecture considerations are at the core of the issues facing IPv4 today.9 In architecture
terminology, IPv4 has lost transparency, defined as:

the original Internet concept of a single universal logical addressing scheme, and the
mechanisms by which packets may flow from source to destination essentially unaltered.

[RFC2775]

Transparency is related to the existence of the end-to-end principle, at the core of the
design of IPv4 and the Internet. This end-to-end principle may be summarized as [RFC2775]:

• Certain functions can only be accomplished by the end nodes. For example, failures in
transmission and end-to-end security can only be managed by the end nodes. As such,
state of the end-to-end communication must only be kept by end nodes and not by the

8 Apart, that is, from some fees paid by the providers to the registries for the registry own operations. However,
these fees are near to zero when shared over all the provider’s customers.
9 This section is based on RFC2775 and RFC2993, very good documents to read for a more exhaustive description.
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network. The network is enabled to re-route packets transparently and efficiently, since
no state is kept in the network.

• Transport protocols are designed to provide the required functions over a non-guaranteed
IP network. Enhancements [RFC2581] were also integrated in end-nodes to better manage
congestion.

• Packets can flow unaltered throughout the network and IP addresses are used as unique
labels for end systems.

Implications of NAT in the network are illustrated by the following issues [RFC2993]:

• NAT is a single point of failure. Since a NAT keeps state, any failure of the NAT requires
that all the current connections of all nodes behind the NAT be re-established.

• Application-level gateways(ALG) are complex. ALG are used in NAT devices to inspect
application protocol packets to modify them on the fly. Any application requires a syn-
chronization of all ALG in the field to support the deployment of the application.

• NAT violates TCP states. TCP states are defined for end nodes to manage the connections.
A device in the network that is assigning transient addresses and ports without managing
TCP states will collide with non terminated TCP connections.

• NAT requires symmetric state management. In the event of link flappings, multiple NATs
must be fully synchronized in real time in order to keep the state of connections and
address and port assignments.

• NAT disables the use of a global name for advertising services. NAT hides devices such
that services behind cannot be advertised in the DNS to be accessed from anywhere.

• Private address space used for VPNs are colliding. L2TP tunnels and other VPN tech-
nologies enable networks to be connected together. However, the address spaces usually
collide since private networks use the same 10.X.X.X address space.

• Correlation in network events is difficult. Since source addresses are changed on the
fly, correlation of network events based on IP address becomes a huge problem since it
requires the dynamic state of translation of all the NATs in the path being saved and then
correlated by some qualitative heuristic.

During an IETF plenary session, Steve Deering, primary author of multicast [RFC1112]
and IPv6 [RFC1883], described the initial IP architecture model as an hourglass. The fol-
lowing figures are from his presentation [Deering, 2001]. The initial and true model of the
Internet Protocol is shown in Figure 1.17.

The hourglass architecture was based on the following design criteria:

• An internet layer to

– make a bigger network (than a layer 2 layer such as ATM);
– provide global addressing (instead of local addressing which makes connecting networks

very difficult);
– virtualize the network to isolate end-to-end protocols from network details/changes.

• A single internet protocol to

– maximize interoperability;
– minimize the number of service interfaces.

• A narrow internet protocol that

– assumes least common network functionality to maximize the number of usable networks.
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Figure 1.17 IP hourglass model
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Figure 1.18 IP hourglass architecture fattening

Over time, this model got ‘fatter on the waist’, as shown in Figure 1.18, by adding
additional services to the IP protocol itself, such as multicast, QoS, security, MPLS, L2TP,
and others.

This fattening requires additional functionality from the underlying layers, which makes
these new functionalities more difficult to deploy. Moreover, the introduction of network
address translation (NAT) and application level gateways (ALG) broke the IP model as
shown in Figure 1.19. With these middle boxes, state management is introduced in the
network and behavior is unpredictable.
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Figure 1.19 NAT and ALG breaking the IP hourglass architecture
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Figure 1.20 ATM replacing IP in the hourglass architecture

Asynchroneous Transfer Mode (ATM) tried to become a layer 3 protocol, as shown in
Figure 1.20, but was unsuccessful.

Eventually, the IP layer might become overloaded making the architecture too fat, as
shown in Figure 1.21.

On the positive side, for the architecture, we have used IP tunneling to overlay networks,
as shown in Figure 1.22.
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Figure 1.21 IP overloaded and IP hourglass architecture too fat
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Figure 1.22 IP tunneling still in the IP hourglass architecture

The IP tunneling techniques do not change the IP hourglass model, since the layering is
preserved. Such a technique is used to encapsulate IPv6 in IPv4 packets, enabling fast IPv6
deployment over current IPv4 networks, as discussed in Chapter 16.

Figure 1.23 shows the dual-stack integration of IPv4 with IPv6 where the two are used
together. This is the main path we are taking towards deploying IPv6, as discussed throughout
this book. However, it introduces two service interfaces, requires changes on both upper and
lower layers and is not interoperable.

Figure 1.24 shows the target architecture where IPv4 is replaced by IPv6 to restore a
thin layer 3 architecture, leaving the lower layer to handle the wires and the upper layers to
handle the application requirements.

This final target would fully restore the initial IP architecture, leaving the maximum of
flexibility for transport and application layers. It is hoped that, at some point in time, we
will drink the wine!
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Figure 1.23 Dual stack in the IP hourglass architecture
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Figure 1.24 End target with IPv6 for the IP hourglass architecture

1.3.1 Network Address Translator Variations

Worst of all, the engineering community have found that NATs have a wide variety of
behaviors[RFC3022, RFC3027, RFC3235]. This situation became apparent while application
protocol designers were defining techniques to overcome NAT limitations in their respective
application protocol. These techniques were based on the early identification of NAT laziness
to make the translation of IP addresses and ports as precise as possible. Therefore, various
techniques of NAT-traversal [RFC3489, Rosenberg, 2004] have been designed, none of
which works in all cases and seamlessly enables the application. This single issue might by
itself create sufficient network management costs to justify a full and rapid deployment of
IPv6. The book Web site contains a section describing the variety of NATs.
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1.4 Paradigm Shift

The networking world has changed since the 1970s. The concept of hosts and networks has
changed. Table 1.2 lists the changes in networking that demonstrates the paradigm shift. It
also lists the requirements for this new networking.

The listed requirements are all part of the design features of IPv6.

Table 1.2 Changes in networking

Past role New Role Description Requirements

Host Node or
device

A host used to be a big fixed computer.
Now, an IP host may be a tiny sensor, a
control on an airplane, an identification tag
on a cow or a videocamera.

IP efficiency.
Autoconfiguration.

Host Server With the advent of personal computers and
client-server models, the hosts became
clients. Nowadays, with VoIP, peer-to-peer
and multimedia services, the host is offering
services to the network, as an edge device.

IP reachability.
Large address
space.

Host Router Where before a host was present, now it is a
router. With personal area networks, one
brings a PDA, a cell phone and a laptop:
one of them is the router for the others.
With broadband access to the home, where
once a single host was attached, now it is a
router with a network.

Automated routing
and router
configuration.
Network prefix
delegation.

Static Mobile With Wifi, 3G and other wireless
technologies, and the pretty small devices
existing today, the devices are mobile and
society becomes accustomed to using
mobility services.

IP mobility.

Network Unmanaged
small
network

Networks used to be large, managed by IP
routing experts. Nowadays, networks in the
home, personal area networks and sensor
networks are all examples of small networks
not managed by IP routing experts, but
mostly unmanaged.

Automated network
deployments.

Friendly Not friendly Back in the early Internet, there was a good
level of trust between the organizations,
mainly universities and research centers,
connected to the Internet. The requirements
for security were basic. Now, the trust that a
user should have when connecting to the
Internet is probably near zero.

Security

Note: Well, we (the engineering community) try hard to make the home networks unmanaged, but
when one looks at the configuration needed on a typical home gateway, we have still a long way to
go to make it easy!
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1.5 IETF Work Towards IPv6

As discussed in Section 1.1.1, the Solensky study [Solensky, 1990] that demonstrated the
exhaustion of class B address space by March 1994 was the first wakeup call in the IETF.
Table 1.3 shows the steps taken by the IETF [RFC1752] towards what was first named IPng
and then renamed IPv6, when the new IP version number was assigned to 6.

From 1991 to 1995 and parallel with the IETF requirements work thread, many IPng
protocol candidates were designed and discussed. Table 1.4 lists the candidates.

Figure 1.25 shows the generation tree of the proposals. Initially, there were six different
protocols, and over time, some merged and some were not considered in the final evaluation
step for IPng.

Table 1.3 IETF major steps towards IPv6

Date Step Description Reference

August 1990 Predicted exhaustion
of class B addresses
by 1994

First wakeup call within the
IETF. The class B address space
could be exhausted in 4 years!

[Solensky, 1990]

November 1991–
November 1992

Routing and
addressing(ROAD)
working group formed

ROAD wg was formed to address
the routing and addressing issues.

[RFC1380]

Recommendations were: CIDR
and new protocol through a
request for proposal process.

June 1992 Internet Architecture
Board (IAB)
recommendation on IP
version 7

IAB recommended to use CLNP
instead of a new IP protocol. The
proposal was named IP version 7.

[IAB, 1992]

July 1992 IETF rejects IAB
proposal

During the IETF meeting, the
IETF rejects the IAB proposal for
IP version 7 based on CLNP.

[IABREJECT]

September 1993 Recommendation to
use Classless
Inter-Domain Routing
(CIDR)

CIDR removes the class structure,
enabling more efficient address
assignments and aggregation.

[RFC1519]

December 1993 Solicitation for IPng
requirements and
selection criteria

The IPng area directors sollicit
contributions on requirements and
selection criteria for the new IPng
protocol.

[RFC1550]

July 1994 IPv4 address
exhaustion estimated
between 2005 and
2011

The Address Lifetime
Expectations (ALE) working
group was chartered to estimate
the remaining lifetime of IPv4
address space. They concluded
that the IPv4 address space end of
life is between 2005 and 2011.

[RFC1752]

(continued overleaf )
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Table 1.3 (continued)

Date Step Description Reference

August 1994 20 White
Papers on IPng
requirements and
selection criteria

20 white papers were
contributed responding to the
solicitation [RFC1550], from
the following subjects or
industries: cable TV, cellular,
electric power, military, ATM,
mobility, accounting, routing,
security, large corporate
networking, transition,
market acceptance, host
implementations and others.

[RFC1667], [RFC1668],
[RFC1669], [RFC1670],
[RFC1671], [RFC1672],
[RFC1673], [RFC1674],
[RFC1675], [RFC1676],
[RFC1677], [RFC1678],
[RFC1679], [RFC1680],
[RFC1681], [RFC1682],
[RFC1683], [RFC1686],
[RFC1687], [RFC1688],
[RFC1753]

December 1994 IPng Area Formed A new area within IETF is
formed to manage the IPng
effort. The framework of
efforts is also defined.

[RFC1719]

December 1994 Technical criteria
to choose IPng

A list of criteria is defined and
going to be used against all the
IPng protocol proposals.

[RFC1726]

January 1995 Recommendation
for IPng

The IPng area directors main
recommendation is to use the
SIPP 128bits version as the
basis of the new IPng
protocol. Many working
groups are formed.

[RFC1752]

December 1995 IPv6 specification The first version of the IPv6
specification is published.

[RFC1883]

December 1996 Ngtrans working
group first
meeting

The Next generation transition
(ngtrans) working group is
formed to handle the transition
to IPv6.

[IETF37ngtrans]

December 1998 New version of
IPv6 specification

Based on implementations and
additional work, a new version
of the IPv6 specification is
published. It slightly changes
the header format, clarifies
many items such as Path
MTU, traffic class, flow label
and jumbograms.

[RFC2460]

Note: When an RFC document is the reference, the date is the publication date of the RFC. In most
cases, the actual step happened many months before the publication date.

SIPP, TUBA and CATNIP were the protocol candidates reviewed more carefully by the
IPng directorate [RFC1752]. SIPP was chosen with some additional modifications, such as
increasing the address size from 64 bits to 128 bits, after a long debate on the appropriate
size of the address space.
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Table 1.4 IPng protocol candidates

Protocol Name Full name Reference

IP encaps Internet Protocol Encapsulation [RFC1955]
SIP Simple Internet Protocol
PIP P Internet Protocol [RFC1621], [RFC1622]
Simple CLNP Simple Connectionless-mode Network Layer

Protocol
Nimrod New IP Routing and Addressing Architecture [RFC1753], [NIMROD],

[RFC1992]
TP/IX [RFC1475]
IPAE IP Address Encapsulation
TUBA TCP and UDP with Bigger Addresses,

TCP/UDP Over CLNP-Addressed Networks
[RFC1347], [RFC1561]

CATNIP Common Architecture for Next-Generation IP [RFC1707]
SIPP Simple Internet Protocol Plus [RFC1710]
SIPP 128bits ver Simple Internet Protocol Plus, 128 bits

address version
IPng Internet Protocol Next Generation [RFC1883]
IPv6 Internet Protocol version 6 [RFC1883]

IP Encaps

IPAE

SIP

SIP

SIPP

SIPP

IPng

IPv6

SIPP 128 
bits ver

PIP Simple CLNP

TUBA

TUBA

TP/IX

CATNIP

CATNIP

Nimrod

Protocols
closely

evaluated

Figure 1.25 IPng protocol proposals generation tree
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1.6 IPv6 Main Features

“IPv6 is a new version of the Internet Protocol. It has been designed as an evolutionary,
rather than revolutionary, step from IPv4. Functions which are generally seen as working
in IPv4 were kept in IPv6. Functions which don’t work or are infrequently used were
removed or made optional. A few new features were added where the functionality was
felt to be necessary.” [RFC1752]

Table 1.5 lists the main features of IPv6, which introduces many concepts, discussed in
the following chapters.

Table 1.5 IPv6 features

Feature Implementation Benefit Book chapter
or section

Larger addresses 128 bit
addresses

From 32 bit address space in IPv4 to 128 bit
address space. It enables all nodes to be
addressable and reachable, removing the
need for network address translation and
restoring the end-to-end model for
end-to-end capabilities such as security.

4

More levels of
addressing
hierarchy

Address
architecture

Multiple levels in the addressing hierarchy
provide better aggregation of routes, easier
allocation of addresses to downstreams and
scalability of the global routing table.

4

Scoping in the
address

Specific bits
in the address

Address scoping enables easy filtering at
boundaries, such as link or site and better
security against remote attack on link layer
protocols.

4

Simple and fixed
address
architecture

/48 for sites,
/64 for a link

Simplified address architecture enables
easier addressing plans, which decreases the
network management costs. Now, subnet
masks are fixed and provide virtually
unlimited numbers of nodes on a link.

4

Privacy
addresses

Specific bits in
the address

Provides privacy for the end-user where the
IP address cannot be used for tracking
traffic usage.

13.4

Multiple
addresses on an
interface

IPv6 stack Multiple addresses on interfaces enables
multiple use, virtual hosting, easier
renumbering and a method for multihoming.

5

Autoconfiguration
of nodes

IPv6 stack,
router
advertisements

Auto-configuration is based on
advertisements about the link addressing
sent by the routers. Nodes insert their MAC
address into the host part of the IPv6
address. It enables fast and reliable
configuration of nodes, as well as easy
renumbering.

5
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No address
conflicts on links

IPv6 stack Embedding the unique link address (MAC)
into the host part of the IPv6 address and a
duplicate address detection method guarantee
uniqueness of the address on the link.

5

Better reliability
in auto
configuration

Router
advertisements

Each router on a link sends auto-configuration
information to nodes, so if one router is
dead, others are still sending. The router
infrastructure is always nearer to the host and
more fault tolerant than DHCP servers.

5

Multicast address
scoping

Specific bits in
the address

A multicast address now contains a scope. IPv4
multicast had to rely on TTL to manage the
reachability of a multicast channel, which
makes multicast management complex. IPv6
multicast is easy to manage since the scope of
the channel is within the IPv6 multicast address.

4

Simpler and
more efficient IP
header

Less number of
fields, no
checksum, 64
bit aligned
fields

Routers process the packets faster and more
efficiently, which improves the forwarding
performance.

3

Extension
headers

Options are
placed after the
base IPv6
header

Options for IPv6 packets are implemented as
extension headers and are tagged with
processing options. Routers do not have to look
at most extension headers which increases their
forwarding performance. New headers can be
added incrementally without any impact on
implementations.

3

Mandatory IP
security

IPsec IPsec is mandatory in IPv6, which makes all
nodes in a position to secure their traffic, if
they have the necessary underlying key
infrastructure.

13

Source routing Extension
header

Source routing is implemented in a way so that
routers not directly involved in the source
routing can still make policy decisions based
on the destination address. This feature makes
source routing more deployable.

9.2

Simple and
flexible
transition

Transition
protocols

In the foundation and requirements of IPv6,
there was a clear need to make a smooth
transition. The requirements were: incremental
upgrade, incremental deployment, easy
addressing and low start-up costs.

16, 17, 18

Labeling flows
for QoS

Flow label
header field

A flow label is defined in a specific field in the
basic header, enabling the labeling and policing
of traffic by the routers, without the need to
inspect the application payload by the routers,
resulting in more efficient QoS processing.

14

(continued overleaf )
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Table 1.5 (continued)

Feature Implementation Benefit Book chapter or
section

Multihoming
capabilities

Multiple prefix
on the same
link and on
interfaces

Multiple prefixes can be announced in
router advertisements, which creates
multiple addresses on interfaces.
Lifetimes of prefixes are managed by
the nodes which provides an easy way
to multihome nodes.

9.12

More efficient
use of links

Neighbor
discovery

Link scope interactions between nodes
and between nodes and routers are
optimized.

5.2.2, 6.1, 6.2

Use of Multicast
for discovery and
link-local
interaction

Neighbor
discovery

No broadcasts are used in IPv6. In
most cases, only relevant nodes
receive the requests.

5.2.2, 6.1, 6.2, 6.3

Mobility MobileIPv6 Mobility is integrated in IPv6 headers,
stacks and implementations, making
mobility a seamless and deployable
feature.

11

Private but
unique address
space

Unique local
address space

Private addresses are used for
unconnected networks to the Internet.
Different than RFC1918 private IPv4
address space, private IPv6 address
space remains unique to the site, which
makes it easy to connect private
networks together.

4.3.2.3

1.7 IPv6 Milestones

Table 1.6 lists some major milestones of IPv6.

1.8 IPv6 Return on Investment

A study [Pau, 2002a] has established a return on investment framework for IPv6:

• adopters of IPv6 run smaller risks than waiting;
• targeted ratio of approx. 16% of IPv6 creates positive ROI on incremental deployment;
• migration costs can hardly be a deciding factor in deploying IPv6.

Another study [Pau, 2002b] from the same author uses an analytical model to reveal that
for the ISP operator, net revenue with IPv6 is intrinsically and systematically higher than
for IPv4.
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Table 1.6 Some IPv6 milestones

Date Step Description Reference

August 1990 Predicted
exhaustion of
class B addresses
by 1994

First wakeup call within the IETF.
The class B address space could be
exhausted in 4 years!

[Solensky, 1990]

January 1995 Recommendation
for IPng

The IPng area directors main
recommendation is to use the SIPP
128 bits version as the basis of the
new IPng protocol. Many working
groups are formed.

[RFC1752]

December
1995

IPv6
specification

The first version of the IPv6
specification is published.

[RFC1883]

July 1996 First IPv6 test
network over
Internet (6bone)

The 6bone IPv6 test backbone is
started.

[6bonehistory]

February 1999 Freenet6 service
started

During an IPng working group
interim meeting, the Freenet6
tunnel broker service is announced,
providing the world community
with easy access to the IPv6
Internet using automated tunnels.

http://www.freenet6.net

July 1999 Registry-based
IPv6 address
space allocation
is started

The regional registries, RIPE,
ARIN and APNIC, start allocating
IPv6 address space to providers.

[RIPE-196]

July 1999 IPv6Forum The IPv6Forum body is formed. http://www.ipv6forum.com

February 2000 Solaris8 The first commercial OS to
include IPv6 in the product as
standard feature is Sun Solaris 8.

http://www.sun.com/ipv6

March 2000 FreeBSD 4.0 FreeBSD open source operating
system now includes IPv6 in its
standard distribution.

http://www.freebsd.org

May 2001 Freenet6 second
generation

The freenet6 service second
generation uses the TSP tunnel
broker protocol.

http://www.freenet6.net

1.9 What Happened to IPv5?

IPv5 is the IP protocol number of the Stream Protocol (ST) [RFC1190], an experimental
protocol for streaming traffic. Figure 1.26 shows where ST fits in the IP architecture,
including some specific streaming transport protocols named PVP and NVP.

To differentiate IPv4 packets from ST IP packets at the link layer, ST requires a specific
IP version number. At the time of ST, the next version number available for IP was ‘5’.
So IANA [IANA, 2001] allocated 5 to ST, so ST is also known as IPv5. When IPng was
designed, the next version number available for IP was ‘6’, so IPng is IPv6.
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Link Layer
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Figure 1.26 Streaming Protocol and IPv4 Architecture

ST is an experimental protocol and is not deployed. Streaming is handled with multicast,
RTP and other protocols.

1.10 Summary

IPv4 was deployed mainly in the university networks before the Internet became so pervasive.
At that time, the Internet was for information sharing and electronic communications. For
information sharing, ftp sites were used, then came Archie to index ftp sites, then Gopher
which structures the information, then Veronica to index the gopher sites and then came
the Web and the first client Mosaic. Before the Web and Mosaic, there was ‘no killer
application’. However, there was a playground fertile for future innovations, and now it is
part of our daily life.

As we have seen in the first sections of this chapter, the current IPv4 protocol is no longer
fertile for innovations and is now a pretty constrained network.

IPv6 restores the fully-fledged network needed to deploy new applications, most of them
probably still unknown. In the near future, there will be very little or zero IPv4 address space
remaining.

The drivers for IPv6 are multiple, such as mobility, reachability, network management,
multimedia, and others described in this chapter. More trouble and higher costs with IPv4,
combined with new applications requiring the new IPv6 functionalities, is driving IPv6.

1.11 References
[6bonehistory] Ngtrans historic milestones, http://www.6bone.net/ngtrans/ngtrans_charter.html
Baset S. and Schulzrinne H., ‘An Analysis of the Skype Peer-to-Peer Internet Telephony Protocol’, Columbia

University, September 15, 2004, http://www.cs.columbia.edu/∼library/TR-repository/reports/reports-2004/cucs-
039-04.pdf

Charnie, J., ‘Statement to the commission on population and development’, United Nations, March 2004,
http://www.un.org/esa/population/cpd/37OPEN.pdf

Deering, S., ‘Watching the Waist of the Protocol Hourglass’, Proceedings of the 51st Internet Engineering Task
Force, August 2001, http://www.ietf.org/proceedings/01aug/slides/plenary-1/index.html

Hain, T., ‘Expanded Address Allocation for Private Internets’, Internet-Draft draft-hain-1918bis-00, April 2004.
Huston, G., ‘Analyzing the Internet’s BGP Routing Table’, January 2001, http://www.potaroo.net/papers/ipj/

4-1-bgp.pdf
Huston, G., ‘Growth of the BGP Table’, January 2005, http://bgp.potaroo.net/



IPv6 Rationale and Features 35

IAB, Internet Activities Board Meeting Minutes, June 1992, http://www.iab.org/documents/IABmins/
IABmins.1992-06-18.html

[IABREJECT] Proceeding of the twenty-fourth Internet Engineering Task Force, http://www.ietf.org/
proceedings/prior29/IETF24.pdf

IANA, ‘IP protocol numbers’, ftp://ftp.iana.org/assignments/version-numbers, November 2001.
[IETF37ngtrans] Proceedings of the 37th Internet Engineering Task Force, CNRI, December 1996,

http://www.ietf.org/proceedings/96dec/toc.html
Nimrod: ‘A Scalable Routing Architecture for Large, Heterogeneous, and Dynamic Internetworks’,

http://www.ir.bbn.com/projects/nimrod/nimrod-index.html
Pau, L.-F., (2002a) ‘IPv6 Return on Investment (R.O.I) Analysis Framework at a Generic Level, and First Con-

clusions’, Erasmus Research Institute of Management (ERIM), ERIM Report Series Research in Management,
Rotterdam, The Netherlands, ERS-2002-78-LIS, September 2002.

Pau, L.-F., (2002b) ‘A Business Evaluation of The Next Generation IPv6 Protocol in Fixed And Mobile Commu-
nication Services: An Analytical Study and Calculation’, Erasmus Research Institute of Management (ERIM),
ERIM Report Series Research in Management, Rotterdam, The Netherlands, ERS-2002-78-LIS, September 2002.

[RFC959] Postel, J. and Reynolds, J., ‘File Transfer Protocol’, STD 9, RFC 959, October 1985.
[RFC1058] Hedrick, C., ‘Routing Information Protocol’, RFC 1058, June 1988.
[RFC1112] Deering, S., ‘Host Extensions for IP multicasting’, RFC 1112, August 1989.
[RFC1190] Casner, S., Lynn, C., Park, P., Schroder, K. and Topolcic, C., ‘Experimental Internet Stream Protocol:

Version 2 (ST-II)’, RFC 1190, October 1990.
[RFC1347] Callon, R., ‘TCP and UDP with Bigger Addresses (TUBA), A Simple Proposal for Internet Addressing

and Routing’, RFC 1347, June 1992.
[RFC1380] Gross, P. and Almquist, P., ‘IESG Deliberations on Routing and Addressing’, RFC 1380, November

1992.
[RFC1466] Gerich, E., ‘Guidelines for Management of IP Address Space’, RFC 1466, May 1993.
[RFC1475] Ullmann, R. ‘TP/IX: The Next Internet’, RFC 1475, June 1993.
[RFC1519] Fuller, V., Li, T., Yu, J. and Varadhan K., ‘Classless Inter-Domain Routing (CIDR): An Address

Assignment and Aggregation Strategy’, RFC 1519, September 1993.
[RFC1550] Bradner, S. and Mankin, A., ‘IP: Next Generation (IPng) White Paper Solicitation’, RFC 1550, December

1993.
[RFC1561] Piscitello, D., ‘Use of ISO CLNP in TUBA Environments’, RFC 1561, December 1993.
[RFC1621] Francis, P., ‘Pip Near-term Architecture’, RFC 1621, May 1994.
[RFC1622] Francis, P., ‘Pip Header Processing’, RFC 1622, May 1994.
[RFC1667] Symington, S., Wood, D. and Pullen, J., ‘Modeling and Simulation Requirements for IPng’, RFC 1667,

August 1994.
[RFC1668] Estrin, D., Li, T. and Rekhter Y., ‘Unified Routing Requirements for IPng’, RFC 1668, August 1994.
[RFC1669] Curran, J., ‘Market Viability as a IPng Criteria’, RFC 1669, August 1994.
[RFC1670] Heagerty, D., ‘Input to IPng Engineering Considerations’, RFC 1670, August 1994.
[RFC1671] Carpenter, B., ‘IPng White Paper on Transition and Other Considerations’, RFC 1671, August 1994.
[RFC1672] Brownlee, N., ‘Accounting Requirements for IPng’, RFC 1672, August 1994.
[RFC1673] Skelton, R., ‘Electric Power Research Institute Comments on IPng’, RFC 1673, August 1994.
[RFC1674] Taylor, M., ‘A Cellular Industry View of IPng’, RFC 1674, August 1994.
[RFC1675] Bellovin, S., ‘Security Concerns for IPng’, RFC 1675, August 1994.
[RFC1676] Ghiselli, A., Salomoni, D. and Vistoli, C., ‘INFN Requirements for an IPng’, RFC 1676, August 1994.
[RFC1677] Adamson, R., ‘Tactical Radio Frequency Communication Requirements for IPng’, RFC 1677,

August 1994.
[RFC1678] Britton, E. and Tavs, J., ‘IPng Requirements of Large Corporate Networks’, RFC 1678, August 1994.
[RFC1679] Green, D., Irey, P., Marlow, D. and O’Donoghue, K., ‘HPN Working Group Input to the IPng

Requirements Solicitation’, RFC 1679, August 1994.
[RFC1680] Brazdziunas, C., ‘IPng Support for ATM Services’, RFC 1680, August 1994.
[RFC1681] Bellovin, S., ‘On Many Addresses per Host’, RFC 1681, August 1994.
[RFC1682] Bound, J., ‘IPng BSD Host Implementation Analysis’, RFC 1682, August 1994.
[RFC1683] Clark, R., Ammar, M. and Calvert, K., ‘Multiprotocol Interoperability In IPng’, RFC 1683, August 1994.
[RFC1686] Vecchi, M., ‘IPng Requirements: A Cable Television Industry Viewpoint’, RFC 1686, August 1994.
[RFC1687] Fleischman, E., ‘A Large Corporate User’s View of IPng’, RFC 1687, August 1994.
[RFC1688] Simpson, W., ‘IPng Mobility Considerations’, RFC 1688, August 1994.



36 Migrating to IPv6

[RFC1707] McGovern, M. and Ullmann, R., ‘CATNIP: Common Architecture for the Internet’, RFC 1707, October
1994.

[RFC1710] Hinden, R., ‘Simple Internet Protocol Plus White Paper’, RFC 1710, October 1994.
[RFC1715] Huitema, C., ‘The H Ratio for Address Assignment Efficiency’, RFC 1715, November 1994.
[RFC1719] Gross, P., ‘A Direction for IPng’, RFC 1719, December 1994.
[RFC1726] Partridge, C. and Kastenholz, F., ‘Technical Criteria for Choosing IP The Next Generation (IPng)’,

RFC 1726, December 1994.
[RFC1752] Bradner, S. and Mankin, A., ‘The Recommendation for the IP Next Generation Protocol’, RFC 1752,

January 1995.
[RFC1753] Chiappa, J., ‘IPng Technical Requirements of the Nimrod Routing and Addressing Architecture’, RFC

1753, December 1994.
[RFC1812] Baker, F., ‘Requirements for IP Version 4 Routers’, RFC 1812, June 1995.
[RFC1883] Deering, S. and Hinden, R., ‘Internet Protocol, Version 6 (IPv6) Specification’, RFC 1883,

December 1995.
[RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G. and Lear, E., ‘Address Allocation for Private

Internets’, BCP 5, RFC 1918, February 1996.
[RFC1945] Berners-Lee, T., Fielding, R. and Nielsen, H., ‘Hypertext Transfer Protocol – HTTP/1.0’, RFC 1945,

May 1996.
[RFC1955] Hinden, R., ‘New Scheme for Internet Routing and Addressing (ENCAPS) for IPNG’, RFC 1955,

June 1996.
[RFC1992] Castineyra, I., Chiappa, N. and Steenstrup, M., ‘The Nimrod Routing Architecture’, RFC 1992,

August 1996.
[RFC2050] Hubbard, K., Kosters, M., Conrad, D., Karrenberg, D. and Postel, J., ‘Internet Registry IP Allocation

Guidelines’, BCP 12, RFC 2050, November 1996.
[RFC2068] Fielding, R., Gettys, J., Mogul, J., Nielsen, H. and Berners-Lee T., ‘Hypertext Transfer Protocol –

HTTP/1.1’, RFC 2068, January 1997.
[RFC2401] Kent, S. and Atkinson, R., ‘Security Architecture for the Internet Protocol’, IETF RFC 2401, November

1998.
[RFC2460] Deering, S. and Hinden, R., ‘Internet Protocol, Version 6 (IPv6) Specification’, RFC 2460, December

1998.
[RFC2581] Allman, M., Paxson, V. and Storens, W., ‘TCP Congestion Control’ RFC 2581, April 1999.
[RFC2775] Carpenter, B., ‘Internet Transparency’, RFC 2775, February 2000.
[RFC2993] Hain, T., ‘Architectural Implications of NAT’, RFC 2993, November 2000.
[RFC3022] Srisuresh, P. and Egevang, K., ‘Traditional IP Network Address Translator (Traditional NAT)’, RFC

3022, January 2001.
[RFC3027] Holdrege, M. and Srisuresh, P., ‘Protocol Complications with the IP Network Address Translator’, RFC

3027, January 2001.
[RFC3235] Senie, D., ‘Network Address Translator (NAT)-Friendly Application Design Guidelines’, RFC 3235,

January 2002.
[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M. and

Schooler E., ‘SIP: Session Initiation Protocol’, RFC 3261, June 2002.
[RFC3489] Rosenberg, J., Weinberger, J., Huitema, C. and Mahy, R., ‘STUN – Simple Traversal of User Datagram

Protocol (UDP) Through Network Address Translators (NATs)’, RFC 3489, March 2003.
[RIPE-196] RIPE NCC, ‘Provisional IPv6 Assignment and Allocation Policy Document’, RIPE-196, July 1999.
Rosenberg, J., ‘Traversal Using Relay NAT (TURN)’, Internet-Draft draft-rosenberg-midcom-turn-04, February

2004.
Solensky F., ‘Continued Internet Growth’, Proceedings of the 18th Internet Engineering Task Force, August 1990,

http://www.ietf.org/proceedings/prior29/IETF18.pdf
[Skype] http://www.skype.com
Walker, J., ‘Speak Freely: End of Life Announcement’, January 2004, http://www.fourmilab.ch/speakfree/unix

1.12 Further Reading
Walker, J., ‘The Digital Imprimatur’, November 2003, http://www.fourmilab.ch/documents/digital-imprimatur/



2
I Can’t Wait to Get my Hands
Dirty!

This chapter is made for the impatient who can’t wait to understand everything before trying
IPv6. A real network example is used in this chapter. You are encouraged to duplicate the
setup in your environment and try it, even if you haven’t read the whole book. Skip this
chapter if you want to learn IPv6 in a more stepwise way.

2.1 Setup Description

Figure 2.1 shows a home network, with one gateway implementing IPv4 Network Address
Translation (NAT) connected to the IPv4 Internet and attaching a subnet with private IPv4
address space and a few hosts. We will take one of the internal hosts to provide IPv6
connectivity to the home LAN.

The network setup is shown in Figure 2.1 and described below:

• one local LAN;
• an IPv4 network address translation (NAT) device (R1), such as typical home gateways,

connected to the IPv4 Internet on one side with IPv4 address 192.0.2.1, and to the local
LAN on the other side, with IPv4 private address 192.168.1.1;

• one IPv6-enabled node using IPv4 private address 192.168.1.2 that will act as IPv6
router(N2);

• one IPv6-enabled host (N3) (it is also IPv4-enabled, but this fact will be ignored).

The IPv6 connectivity is provided by the Freenet6 service [Freenet6] to the host N2,
which will become a router later in this chapter. Freenet6 implements the Tunnel Setup
Protocol (TSP) tunnel broker solution, described in Section 16.2.9. It creates automatically
IPv6 in IPv4 tunnels between the node and the tunnel broker. TSP is the control protocol
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Figure 2.1 Small network setup

establishing the tunnel between the client and the tunnel broker. A thin TSP client is used
in N2 to negotiate and establish the tunnel.

Within a few steps, the LAN will be a functional IPv6 network connected to the IPv6
Internet. Try it!

2.2 Steps

Instructions are given for FreeBSD 5.2, Linux RedHat 8 and Windows XP in this chapter.
Note the following:

• An IPv6 address has 128 bits and is written in hexadecimal notation with ‘:’ as separator
between the 8 fields of 16 bits each.

• The IPv6 address ‘::1’ is the equivalent of the IPv4 127.0.0.1 loopback address.
• IPv6 addresses starting with ‘fe80::’ are link-local addresses automatically assigned to all

IPv6-enabled interfaces. Link-local addresses provide ready to use addresses for subnet
scope communications. The last 4 fields of the address contains a slightly modified version
of the link-layer (MAC) address of the interface.

• The ‘subnet mask’ in IPv6 is fixed to /64. For every IPv6 address configured on physical
interfaces such as Ethernet, ‘/64’ is appended at the end of the address to show the subnet
mask.

2.2.1 Enabling IPv6 on N2 and N3

The first step is to enable IPv6 on the operating system of N2 and N3 and verify it is
working. The following sub-sections show how to do this for each operating system.

2.2.1.1 FreeBSD

In FreeBSD, IPv6 is enabled by setting the ipv6_enable variable to yes in the
/etc/rc.conf configuration file.

# cat /etc/rc.conf
ipv6_enable=yes

While not necessary, it is simpler for this exercise to reboot FreeBSD after enabling IPv6.
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Pinging to the loopback (::1) is a good way to see that basic IPv6 is working.

% ping6 ::1

Reply packets should now be seen on the screen.
To verify the IPv6 addresses on an interface, use ifconfig <interface_name>.

% ifconfig fxp0

An IPv6 address starting with fe80:: should be assigned to the interface. If it is, then IPv6
is working.

2.2.1.2 Linux

In most Linux distributions, IPv6 is enabled by setting the NETWORKING_IPV6 variable to
yes in the /etc/sysconfig/network configuration file.

# cat /etc/sysconfig/network
NETWORKING_IPV6=yes

Restart network services, enabling IPv6 at the same time, with the ‘service’ command:

# /sbin/service network restart

Pinging to the loopback (::1) is a good way to see that basic IPv6 is working.

% ping6 ::1

Reply packets should be seen on the screen.
To verify the IPv6 addresses on an interface, use ifconfig <interface_name>.

% ifconfig eth0

An IPv6 address starting with fe80:: should be assigned to the interface. If it is, then IPv6
is working.

2.2.1.3 Windows

In Windows XP, IPv6 modules are loaded on the disk as part of the installation, but are not
enabled by default. To enable IPv6, the following command needs to be entered once by an
administrator:

C> netsh interface ipv6 install

Pinging to the loopback (::1) is a good way to see that basic IPv6 is working.

C> ping ::1

Reply packets should be seen on the screen.
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The ‘ipconfig’ command shows the IPv4 and IPv6 addresses, DNS configuration and
default router for all interfaces.

C> ipconfig

An IPv6 address starting with fe80:: should be assigned to one or several interfaces. Windows
automatically enables many transition mechanisms as discussed in Chapter 16. Do not worry
for now about all the interfaces.

2.2.2 Two Nodes Talking Already!

Now that you have configured N2 and N3 with IPv6, you could start sending IPv6 packets!
A broadcast-like address is defined as ff02::1, a multicast address in IPv61. Pinging to this
address will give you replies from all IPv6-enabled nodes on the local LAN. Note that the
replies will show the ‘fe80::’ source address of the neighbors. Try to ping directly to the
other neighbor by using its link-local (fe80::) address.

As you can see, without any further configuration, IPv6 traffic can flow between nodes
on a same link.

2.2.3 Installing and Configuring the TSP Client on N2

The next step is to get IPv6 connectivity to the IPv6 Internet. If your provider does not offer
IPv6 connectivity to your home, then you need to use some IPv6 transition mechanism, as
described in Chapter 16. This chapter uses the TSP tunnel broker which works in most cases,
including behind a NAT, and has the broadest support of client platforms.

Some open source operating systems include the TSP client as part of their distribution
or ports, usually under freenet6 name. If not, then get the TSP client software from the
Freenet6 Web site (http://www.freenet6.net). Download and install it based on the instructions
provided with the software.

The next subsections describe how to proceed for each operating system.

2.2.3.1 FreeBSD

The TSP tunnel broker client is available on FreeBSD in the ports/net/freenet6, or from the
freenet6 Web site (http://www.freenet6.net). If you choose to use the ports, then do install in the
freenet6 directory. This will install the TSP client software and a default configuration file.

2.2.3.2 Linux

The TSP tunnel broker client is included in many Linux distributions, or from the freenet6
Web site (http://www.freenet6.net).

2.2.3.3 Windows

The TSP tunnel broker client is available on Windows from the freenet6 Web site
(http://www.freenet6.net).

1 IPv6 multicast addresses start with ‘ff’.
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2.2.4 Creating an IPv6 in IPv4 Tunnel with Freenet6

To get IPv6 connectivity, this setup creates an IPv6 over the IPv4 tunnel on N2 towards the
Freenet6 tunnel broker. Freenet6 is connected to the IPv6 Internet. The TSP client execution
connects to the Freenet6 tunnel broker, negotiates an IPv6 over the IPv4 tunnel, configures
its own tunnel endpoint and creates an IPv6 default route through that tunnel interface. A
tunnel interface is created or used for the IPv6 in the IPv4 tunnel and is shown in the list of
interfaces.

To run the TSP client, use the administrator privilege (root or Administrator) and type the
tspc command in a shell on N2:

# tspc

After execution, you should get a message that the tunnel is setup with freenet6. If such
a message does not show, retry with the verbose mode on:

# tspc -vvv

2.2.5 Testing IPv6 on N2

Now N2 should be connected to the IPv6 Internet. Try IPv6 ping (ping6 on Linux or
FreeBSD, ping on Windows) to a well known address, such as www.kame.net.

% ping6 www.kame.net

Replies should be seen on the screen. You are connected!!!
A well known milestone in the IPv6 community to test basic IPv6 connectivity is to open

your browser (most recent browsers support IPv6) and then connect to the Kame Web site
(http://www.kame.net). For most browsers, you should see a Web page with a dancing turtle,
which is shown only when one is connecting to the Kame Web site using IPv6. If you are
connecting over IPv4, the turtle does not dance. Kame is the site of the IPv6 developers for
the BSD based distributions.

2.2.6 Requesting an IPv6 Prefix Delegation

N2 is now connected to IPv6. You could redo the same procedure with N3 and both are
connected. However, they use a separate tunnel which is not the most efficient way. A better
way is to convert N2 to a software router using the same physical interface for the tunnel
and for the IPv6 connectivity on the LAN. In this setup, N2 will request an IPv6 address
range (a prefix) from the Freenet6 tunnel broker and will announce that prefix on the LAN.
In typical IPv6 configuration, no DHCP server is used. Instead, the routers are advertising
the prefix on the LAN and the hosts autoconfigure themselves based on that prefix. This
is the autoconfiguration feature of IPv6, described in Chapter 5, a key and novel way to
manage configuration of hosts.

To request a prefix to the Freenet6 tunnel broker, you must first register to freenet6.net using
a Web browser to get a free username and password account. Then modify the tspc.conf file
generated at the install of the TSP client software by changing the variables listed in Table 2.1.
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Table 2.1 TSP client tspc.conf statements

Variable New value Description

userid the registered username The Freenet6 user identification string.
passwd the received password The password for the userid.
host_type router Sets the TSP client as a router. In router mode, the

client will receive a prefix.
prefixlen 48 The length of the prefix desired by the client.
if_prefix interface name The interface on the operating system of the client

used to send router advertisements with the
received prefix from the broker. On linux, set
‘eth0’. On FreeBSD, use the name of the physical
interface (e.g., ‘fxp0’). On Windows, use ‘1’.

Re-executing the TSP client (tspc) should negotiate a tunnel and an IPv6 prefix with the
Freenet6 tunnel broker, create the tunnel and set the router advertisements announcing the
received prefix on the local LAN.

If N3 is IPv6-enabled, then it should have received the router advertisements and have
configured itself with an IPv6 address based on the received prefix from N2. By looking at
the interface (ifconfig or ipconfig), one should see 2 IPv6 addresses on N3, a fe80:: link-
local address and a 2001:: IPv6 address. The 2001:: address is the new address configured
by concatenating the prefix received in the router advertisements with a slightly modified
version of the MAC address of the interface.

By setting the prefixlen to 48 in the tspc.conf file, N2 has requested a /48 prefix to
the Freenet6 tunnel broker service. A /48 is a very large prefix enabling your home network
to have a maximum of 65536 subnets, each having a maximum of 264 hosts. This address
space is many many orders of magnitude larger than the whole IPv4 Internet!

Test IPv6 connectivity on N3 by doing ping or by using the Web browser to the Kame
Web site, as discussed previously.

Now try an IPv6 application, such as a VoIP softphone application [Linphone]!

2.3 Summary

A home network can be easily IPv6-enabled with a few steps, using the Freenet6 tunnel
broker service as the IPv6 provider to get connectivity to the IPv6 Internet. Moreover, one
node on the home LAN may be used for providing connectivity to the other nodes acting as
a software IPv6 router. Freenet6 provides IPv6 address space for this usage.

2.4 References
[Freenet6] http://www.freenet6.net.
[Linphone] http://www.linphone.org.

2.5 Further Reading
[Kame] http://www.kame.net.



3
IPv6 Datagram

This chapter describes the format and properties of the IP datagram, starting with the IPv4
header used since the early 1980s on the Internet and then following with the IPv6 header.
Comparisons between the two protocols are discussed throughout the chapter, but no effort
is made to describe the IPv4 header in details.

Since layer 3 protocols like IP are mainly described by their header, this chapter is
fundamental to the understanding of IPv6. It first describes the basic IPv4 header and then the
basic IPv6 header, with a comparison of fields of the two protocols. Then the IPv6 extension
headers are described. Transport layer considerations are the last part of the chapter.

This chapter, like most chapters in this book, is written to be used both for first reading
and as a reference. For first reading purposes, many details are skipped in favor of more
in-depth description in the next chapters. However, for reference purposes, it tries to be as
exhaustive as possible. Therefore, some items might not be complete on the first reading
because they are covered in subsequent chapters.

3.1 Description of the IP Datagram

Figure 3.1 shows an IP datagram inside a generic link layer frame which starts with its own
link layer header and terminates with a trailer. After the link layer header, the IP header
is the first part of the IP datagram followed by the transport header and followed by the
application protocol data.

Each part contains a field identifying which protocol is in the inner payload. For example,
the Ethernet link layer header contains the Ethernet Type code of 0x0800 identifying that the
payload is an IPv4 datagram. The IP header contains the ‘Protocol’ field identifying that the
payload has a TCP header.

Migrating to IPv6: A Practical Guide to Implementing IPv6 in Mobile and Fixed Networks Marc Blanchet
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Figure 3.1 IP Datagram inside a link layer frame

3.2 IPv4 Header

Figure 3.2 shows the header of the IPv4 datagram [RFC791]. It has 12 fields and its size is
20 octets, without options. Options are variable-length fields with final padding for 32 bit
alignment. The maximum header length with options is 60 octets.

The header fields are briefly described in Table 3.1. The ‘IPv6 use’ column describes the
change in the IPv6 header, explained in the next section.

The data part after the IP header usually starts with the transport header. The transport
protocol, like TCP, is identified in the ‘Protocol’ header field, as illustrated in Figure 3.3.

Version HL

Identification

TOS Total Length

Fragment Offset

Time to Live 20 
octets

Flags

Protocol Checksum 

Source Address

Destination Address

Options

Data

Padding

32 bits 

Figure 3.2 IPv4 Header
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Table 3.1 IPv4 header fields and their IPv6 use

Field Size (in bits) Description IPv6 use

Version 4 = 4 for IPv4 = 6 for IPv6
Header Length 4 Length of the header Removed
TOS 8 Class of service [RFC2474]. Same but renamed to

‘Traffic Class’
Total Length 16 Length of the datagram Different: payload length
Identification 16 Fragment Id In Fragment Extension

Header
Flags 3 Fragmentation flags In Fragment Extension

Header
Fragment Offset 13 Pointer In Fragment Extension

Header
Time to Live 8 Decreasing by one on each hop Same but renamed to

‘Hop Limit’
Protocol 8 Transport protocol identification Same but renamed ‘Next

Header’
Checksum 16 Checksum of the header Removed
Source Address 32 IPv4 address IPv6 address = 128 bits
Destination Address 32 IPv4 address IPv6 address = 128 bits

Protocol

Application protocol data

Transport protocol data

Figure 3.3 Protocol field identifying the transport protocol
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3.3 IPv6 Header

The basic IPv6 header [RFC2460] is simpler than the IPv4 header: it has 8 fields instead of
12. The IP header length and checksum fields are removed, the flow label field is added and
the fragmentation fields are moved in the extension headers. The size of the basic header is
40 octets, which is double the IPv4 header size. This is due to the 4 fold increase of each
address field, from 32 bits to 128 bits each, or from 4 octets to 16 octets each. Figure 3.4
shows the IPv6 header.

Important to remember:

The IPv6 header size is doubled compared to the IPv4 header size, but the size of the
addresses is four times.

The Next Header field is the equivalent of the IPv4 Protocol field and identifies what is
in the payload after the basic header, as shown in Figure 3.5.

Source Address

Hop LimitNext HeaderPayload Length

Flow LabelTraffic ClassVersion

40 
Octets

Destination Address

Extension Headers

Data

32 bits

Figure 3.4 IPv6 header
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Figure 3.5 Use of the Next Header field

Extension headers are optional and placed after the basic header. They are similar to the
options in the IPv4 header. After the extension headers, the transport header follows in the
payload.

3.4 Header Fields

Table 3.2 list all the fields. Each field is described in the order it appears in the header,
starting with the version field.

3.4.1 Version

The ‘Version’ field has 4 bits and identifies the version of the IP protocol . This enables the
operating system receiving the datagram to relay it to the right stack. The current Internet

Table 3.2 IPv6 basic header fields

Name Size Description

Version 4 bits = 6 for IPv6
Traffic Class 8 bits Diffserv and Explicit Congestion Notification bits
Flow Label 20 bits Per-flow identification
Payload Length 16 bits Size of the inner datagram (after the basic header)
Next Header 8 bits Identification of the inner datagram
Hop Limit 8 bits Maximum number of hops
Source Address 128 bits Source address of the datagram
Destination Address 128 bits Destination address of the datagram
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Table 3.3 Assigned IP version numbers

Value of the
Version field

Assignment Description Reference

0–3 Unassigned
4 IPv4 Current version of IP [RFC791]
5 ST Experimental Stream Protocol [IEN119, RFC1190]
6 IPv6 Successor of IPv4; initially assigned

to SIP
[RFC1710, RFC1752]

7 CATNIP IPv7, TP/IX; an alternative to SIP.
Deprecated.

[RFC1707, RFC1475]

8 PIP Merged with SIP proposal.
Deprecated.

[RFC1621, RFC1622]

9 TUBA An alternative to SIP. Deprecated. [RFC1347]
10–15 Unassigned

Protocol has the value of ‘4’ in the version field of the IP datagram while IPv6 has the value
of ‘6’, obviously.

Table 3.3 lists the current assignments of version numbers [IANAVERSIONNUMBERS].
Version 5 is an experimental streaming protocol, discussed briefly in Chapter 14. Version 6
was assigned to the SIP (and later SIPP) proposal that later was chosen as the basis of the
new IP protocol: it was then renamed IPv6. Versions 7, 8 and 9 were assigned to competitive
proposals of SIP and these assignments are now being deprecated because they are not used.
Since it is a 4 bit field, only 16 assignments are possible.

3.4.2 Traffic Class

The ‘Traffic class’ field has 8 bits. It is defined as ‘Type of Service’ in IPv4 and the
bits were initially assigned to serve different levels of service for the datagrams [RFC791].
The processing of these bit assignments in IPv4 stacks is more or less implemented. These
assignments, shown in Figure 3.6, have been redefined [RFC2474] to differentiated services
(diffserv) code points (DSCP). Diffserv enables quality of service in the network and is
discussed in Section 14.2.

The last two unused bits are defined for explicit congestion notification (ECN) [RFC3168],
discussed in Section 19.2.1.

These new assignments (Diffserv and ECN) of the bits are common to IPv4 and IPv6 and
processing is identical. The only difference is the name of the field.

DSCP ECN

Figure 3.6 Diffserv Codepoints Assignments in the TOS/Traffic Class field
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Important to remember:

Traffic Class bits assignment and processing are identical in IPv4 and IPv6.

3.4.3 Flow Label

In IPv4, the routers have to open the IP header and the transport header in order to identify
flows and then to apply specific processing for quality of service. This incurs a high penalty
on the router and introduces delays. Furthermore, it is very difficult to aggregate flows of
protocols that allocate ports dynamically.

The IPv6 flow label field has 20 bits and is the only new field introduced in the header.
It enables a specific per-flow processing of datagrams. This corresponds to the integrated
services (intserv) approach for quality of service. The source tags the flows by putting a
flow identifier in the flow label field. This enables the routers to process specifically and
efficiently those tagged datagrams, since the routers have direct access to the flow label and
don’t have to guess or find the flow using the transport and application data.

3.4.4 Payload Length

In an IPv4 header, there are two length fields: header length defining the length of the header
and total length, the length of the full datagram.

In an IPv6 header, only one length field is available: Payload Length, which is defined as
the length of what follows the basic IP header. This means the transport and application data
as well as extension headers if they are used. It has 16 bits, which means that the maximum
payload length is 216 or 65536 octets.

3.4.5 Hop Limit

In IPv4, the Time To Live (TTL) field was defined in units of seconds before the datagram
dies, but since it is difficult to assume synchronized clocks over the Internet, it was imple-
mented, as suggested in the specification [RFC791], by decreasing the value by one each
time a router forwards the datagram. When a router decreases the value to zero, it rejects
the datagram and sends a ‘Time exceeded’ ICMP error message back to the source. This
behavior is integrated in IPv6 and the name of the field is renamed appropriately to ‘hop
limit’. It also has the same length of 8 bits.

3.4.6 Next Header

The ‘Next Header’ field has 8 bits and identifies the data inside the payload of the IP datagram.
Typically, this is the transport protocol, like TCP or UDP, or in the case of encapsulation of
IPsec, it is the ESP or AH IPsec headers. This is the exact same semantic as the Protocol field in
IPv4 and it shares the same values for both IP protocols. The list of registered values is handled
by IANA[IANAPROTOCOLNUMBERS]. Table 3.4 lists a few usual values.

The only difference in IPv6 regarding the ‘Next Header’ field is the processing of options.
These are defined in extension headers with their own next header value.
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Table 3.4 Next Header typical values

Value Keyword Description Reference

6 TCP Transmission Control Protocol [RFC793]
17 UDP User Datagram Protocol [RFC768]

3.5 Extension Headers

The IP datagram header must be fixed to enable fast hardware-based processing. The basic
IPv6 header is fixed: 40 octets with fixed-length fields. In order to process options and excep-
tions, extension headers are used. They are 64 bits aligned to enable fast hardware/register-
based processing.

Each type of extension header is identified by a Next Header specific value, as listed in
Table 3.5. This table contains only the specific IPv6 extension headers.

Extension headers are daisy-chained. The next header value of the IP header is pointing to
the first extension header, the next header fields of the successive extension headers points
to the next extension header until the last extension header where the next header points to
the transport header.

Important to remember:

Extension headers are used for the optional info of the IPv6 datagram. They are daisy-
chained up to the transport header.

Figure 3.7 shows two extension headers between the IP header and the transport header.
The second extension header has its Next Header field, shown as ‘NH’, identifying the
transport protocol following it.

Figure 3.8 shows an IPv6 datagram with a routing header (43 as listed in Table 3.5), an
authentication header (51) and TCP transport (6).

Table 3.5 IPv6 Next Header values for extension headers

Value Description Book Section Reference

0 Hop-by-Hop Option 3.6.4, 14.3, 15.2 [RFC2460]
43 Routing Header 3.5.2, 9.2 [RFC2460]
44 Fragment Header 3.6.3 [RFC2460]
50 Encapsulation Security Payload 3.5.5, 13.1 [RFC2406]
51 Authentication Header 3.5.5, 13.1 [RFC2402]
59 No Next Header 3.5.6 [RFC2460]
60 Destination Options 3.5.4, [RFC2460]
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3.5.1 Hop-by-Hop Option

This extension header has to be examined by every intermediate node (e.g. routers) along
the path to the destination. There is currently two uses of the Hop-by-Hop options extension
header: the router alert and the jumbogram.

3.5.1.1 Router Alert

This function implemented as a hop-by-hop option extension header is to alert the interme-
diate nodes in the path to process specifically the datagram [RFC2711]. Some protocols, like
Resource Reservation Protocol (RSVP), need to send control messages in a timely fashion
to all routers of a path by sending only one datagram. The usual way for routers to see these
messages is to look in the transport data in all datagrams, in order to find those that are
relevant. This is a very consuming process for a router. Router Alert in the header of an
IPv6 datagram is an easier way to alert the routers of the path so that they will intercept
only these tagged datagrams.

Inside the Router Alert header, only one field is used and it identifies the spe-
cific upper-layer protocol in the datagram. The current registered use of Router Alert
[IANAROUTERALERT] is for:

• the Multicast Listener Discovery (MLD) protocol, discussed in Section 15.2;
• the Resource Reservation Protocol discussed in Section 14.3.1.

3.5.1.2 Jumbogram

Jumbograms are IPv6 datagrams larger than 64 K octets. They need special processing on
each hop since they are oversized compared to the maximum of 16 bits of the Payload
Length field. Jumbograms are discussed in Section 3.6.4.
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3.5.2 Routing

The routing extension header is used for modifying the routing behavior of datagrams along
the path. It is similar to the IPv4 Loose and Strict Source Route options. It is used for generic
source routing and by MobileIP. The routing header is described in Section 9.2.

3.5.3 Fragment

Fragmentation in IPv6 is processed only by the end nodes. Intermediate nodes do not fragment
or process fragmentation. The fragment header is used by the source node to fragment
a datagram larger than the path MTU. Fragmentation and datagram size are discussed in
Section 3.6.3.

Important to remember:

Fragmentation in IPv6 is done only by the end nodes, whereas in IPv4 it is handled by
the routers.

3.5.4 Destination Options

This header is only processed by the destination node. MobileIP, discussed in Chapter 11,
uses this header.

3.5.5 Authentication and Encapsulating Security Payload

These headers are the IPsec protocol headers. They are only processed by the destination
node. In the case of tunneling, the destination address points to the end of the tunnel, while
the inner datagram points to an end node inside the destination network. In this case, the
destination node processing the IPsec header is the tunnel endpoint.

IPsec is identical in IPv4 and IPv6, while IPv6 enables its use more widely because NATs
are no longer used and are harmful for IPv4, and because IPsec is mandatory in IPv6.

Important to remember:

IPsec is identical in IPv4 and IPv6, but it will be easier to use and deploy in IPv6.

IPsec headers are described in Section 13.1.

3.5.6 No Next Header

This header indicates no payload, which means that all relevant information of this datagram
is in the header and extension headers. This happens when control protocol messages use
extension headers and do not need to put extra information in the payload.



IPv6 Datagram 53

Table 3.6 Extension header order

Order Header

1 Hop-by-Hop1

2 Routing2

3 Fragment
4 Authentication
5 Encapsulating Security Payload
6 Destination Options
7 Upper-layer

Notes:
1 If IPv6-in-IPv6 tunneling is used, then the very first

header should be the inner IPv6 header.
2 If both routing and destination options headers are in

the same datagram, then destination options should be
before the routing header.

3.5.7 Order of the Extension Headers

Extension headers are daisy-chained and the order is important because of the following
facts:

• Only one of them, the Hop-by-Hop Options, has to be processed by every intermediate
node.

• The routing header has to be processed only by the intermediate nodes (e.g. routers) listed
in the source route, as described in Section 9.2.

• At the destination, fragments should be processed before anything else.

The order of headers is specified to enable the most efficient processing for all intermediate
nodes and the destination node, shown in Table 3.6.

Source nodes follow this order, but destination nodes are implemented to receive in any
particular order. Intermediate nodes (e.g. routers) should only process hop-by-hop extension
headers. This is much more efficient than IPv4 where the router must look at each variable-
length option in the IPv4 header. This IPv4 processing is more difficult to implement in
hardware. In IPv6, only a single lookup at a specific place in the IPv6 header determines if
additional processing has to be done by the router.

3.6 Datagram Size

The maximum size of an IPv6 datagram depends on the Maximum Transmission Unit (MTU)
and on the Payload Length field size. The Payload Length field is 16 bits wide, which means
that a normal payload cannot be larger than 64 K octets, unless a specific feature named
Jumbogram, discussed in Section 3.6.4, is used.
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Table 3.7 MTU for IPv4 and IPv6

IPv4 IPv6

Minimum MTU 68 1280
Most efficient MTU 576 1500

3.6.1 Maximum Transmission Unit

The MTU is the largest size a given link layer technology can support for datagrams. For
any link, IPv4 mandates a minimum MTU of 68 octets, while the recommended MTU is 576
(see Table 3.7). This enables any IPv4 stack to send a 68 octet datagram with the assurance
that it is guaranteed to be forwarded up to the destination. 68 octets is very small, since most
current link layer technologies have a minimum MTU of 1500.

In IPv6, the minimum MTU is 1280 octets. However, the mandatory minimum fragment
reassembly buffer size is 1500 octets, which tends towards a 1500 octet MTU as the most
efficient MTU.

Important to remember:

The minimum MTU for IPv6 is 1280 octets and the most efficient MTU is 1500. The
maximum datagram size is 64 K octets.

3.6.2 Path MTU Discovery

Since routers do not fragment IPv6 datagrams, if a datagram is larger than the size of one link
in the path to the destination, the router connected to that link and receiving the datagram
sends an ICMP error message to the source and the datagram is dropped. IPv6 nodes use
Path MTU (PMTU) discovery to discover the right MTU to use for this destination.

Path MTU discovery is not new for IPv6 [RFC1981]. It is defined for IPv4 [RFC1191],
but has been rarely used for IPv4. If an IPv6 stack does not use it, then it sends datagrams
with the minimum MTU (1280 octets).

3.6.2.1 Path MTU Discovery Process

The discovery process of the Path MTU is illustrated in Figure 3.9. Source node A wants to
send a datagram to destination node E.

Node A starts by sending a datagram to destination node E (step 1) using its own link-
layer MTU (8122). This first datagram reaches router B which cannot forward the datagram
because the MTU of the next link is smaller. B sends back to A an ICMP error message
‘Packet too big’ with the MTU of the next link of B (4352) in the ICMP error datagram.
The source node A then uses this new received MTU (4352) and resends the datagram to E.
The datagram is forwarded by B and C but stops at D because the MTU of the next link is
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Figure 3.9 Path MTU discovery process

smaller. D sends back to A a similar ICMP error message with the MTU of the next link of
D (1500) in the ICMP error datagram. Node A then uses this new MTU (1500) and resends
the datagram to E which receives it correctly. Node A then selects the last used MTU (1500)
as the Path MTU for all future communications with node E.

Nodes build a table of Path MTUs for each of their destinations.

3.6.2.2 Considerations

Since the network topology changes over time between the two end nodes, this means that the
actual forwarding path changes, which implies that the Path MTU may change by increasing
or decreasing. But the source node is not informed directly about those network changes. So
the discovery process should be done periodically to ensure the best elected Path MTU.

Since the transport layers are responsible for packeting the data, they need to know the
Path MTU at all time. This means that there is a close interaction between this PMTU
discovery process and the transport layer process.

There is essentially no cost to PMTU considering that the first packet is used to test the
PMTU.

3.6.3 Fragmentation

If the source node finds that the PMTU is smaller than the size of the datagram to be sent,
then the source node has to fragment. This might not happen often, but it is a mandatory
feature of any IPv6 stack. Fragmentation in IPv6 is done only by source nodes, not by routers
as in IPv4. Destination nodes reassemble fragments.

The process and the type of information needed to support fragments are mostly identical
to IPv4 fragmentation, but in IPv6 it is done using extension headers instead of options
header fields in IPv4. A datagram is cut into many fragments. Figure 3.10 shows the original
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Figure 3.10 Original datagram and fragments

datagram and the resulting three fragments. Each fragment size is smaller or equal to the
PMTU.

Fragments are IPv6 datagrams with the header of the original datagram and an addi-
tional fragment header, which contains the needed additional information as described in
Table 3.8.

All fragments of the same datagram have the same identification, which is the 32 bit
identification field in the fragment header. The order of fragments is specified by a 13 bit
field called ‘fragment offset’. A flag also identifies the last fragment for that datagram. Since
the fragments can be received by the destination in a random order, the destination node
uses the identification field to group them and the fragment offset to reassemble the original
datagram in the right order.

3.6.4 Jumbogram

While some special link-layer technologies handle MTUs greater than 64 K octets, the upper
limit of the IP datagram size is still limited to 64 K octets by the 16 bits of the Payload
Length field in the header, as described in Section 3.4.4. This prohibits the use of datagrams
larger than 64 K octets.

Table 3.8 Fields in the fragment header

Field name Description Length

Fragment Offset Offset to order the fragments 13
M flag Identify the last fragment 1
Identification Group all fragments of the same datagram together with this ID 32
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Jumbograms are datagrams larger than 64 K octets that need special processing by all
intermediate nodes (i.e. routers). A jumbogram is identified by the following fields, shown
in Figure 3.11:

• The Payload Length header field is set to zero.
• The Next Header is set to Hop-by-Hop.
• The Hop-by-Hop extension header identifies a jumbogram and contains a 32 bit value

specifying the size of the datagram. Therefore, jumbograms have a maximum size of 4G
octets �232�.

When a jumbogram-aware stack sees these conditions, it can handle the jumbogram. Note
that jumbograms don’t have to be supported in every IPv6 stack. In fact, jumbograms are
used essentially for fast and large links inside or between supercomputers.

Modifications of UDP, TCP, (both limited by 16 bit counters) and ICMP, within the
context of jumbograms, are also defined [RFC2675].

3.6.5 Header Compression

The IPv6 header doubles in size to 40 octets compared to the IPv4 header. The IPv6 large
header size is an important issue on limited bandwidth link layers, such as radio. It is also
an important penalty for small datagrams. Multiple header compression schemes have been
designed over time. The Robust Header Compression (RoHC) standard, the last IETF header
compression standard, is discussed in Section 12.2. It is specifically used in some wireless
technologies.
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3.7 Upper-layer Protocols

As a new version of IP, IPv6 strictly changes the IP header but it should not change the
upper layer protocols. However, small changes were necessary: i) the mandatory checksum
in the transport layer, and ii) handling of literal IPv6 addresses.

3.7.1 Checksum

A checksum is applied to the IPv4 header. This enables the IPv4 stack to verify if the header
changed during the trip of the packet between the source and the destination. TCP also uses
a checksum for the transport and UDP uses an optional checksum.

No checksum is applied to the IPv6 header. Instead, IPv6 relies on both the link-layer
and the transport layer checksums, as shown in Figure 3.12. The rationale is based on the
fact that most link-layer already have checksums, which means that there is a very small
probability that the datagram will be corrupted in the path to its destination. If this happens,
then the transport layer checksum will find it, since this checksum also takes many IP header
fields in its calculation. Not doing checksum at the IP layer leaves the routers free for
calculating checksums on each forwarded datagram, which gains efficiency and scalability
in the long run.

UDP checksums are optional in IPv4. UDP checksums are mandatory over IPv6. Other
transport protocols must also use a checksum.

Important to remember:

IPv6 has no IP checksum, but mandates the UDP checksum.
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Checksum

Figure 3.12 Checksums in IPv4 and IPv6
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3.7.2 Implications in Application Protocols

While IPv6 does not mandate any change in the upper-layer protocols, the protocols or
their implementation still need to be updated. Some upper-layer protocols have to handle
IP addresses in their mechanism. If these protocols were recently designed or updated, then
the handling of IPv6 addresses is taken care of. If not, then they would have to be modified
accordingly.

For example, the FTP protocol [RFC959] exchanges IP addresses in its control connection.
The protocol has been updated [RFC1639, RFC2428] to support IPv6 addresses.

Some protocols may be modified to use the new functions in IPv6. For example,
MobileIPv6 uses the routing and the destination options headers to optimize the routing of
the MobileIP datagrams. Mobile nodes also use anycast addresses to find agents. MobileIP
is discussed in Chapter 11.

3.8 Summary

The IPv6 header is similar to the IPv4 header, but:

• the header size is 40 octets (instead of 20);
• the options are processed as daisy-chained extension headers;
• the fragmentation is an extension header, and is only done by source nodes;
• there is no checksum in the IPv6 header, but mandatory transport protocol checksums;
• the path MTU discovery is mandatory.
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4
Addressing

As discussed in Chapter 1, a central rationale behind IPv6 is a much larger address space.
This address space not only fulfills the exhaustion requirements, but also enables the use
of the addressing structure for protocol means, which gives IPv6 a much more flexible
protocol for the new applications requirements. Therefore, this chapter is very important for
the understanding of IPv6.

The address space is first presented followed by the format of an IPv6 address. Each type
of address is then discussed: unicast, multicast and anycast. Finally, the address architecture
is detailed.

4.1 Address Space

IPv4 addresses are 32 bits wide, which expands to a maximum of 4,294,967,296
unique addresses. IPv6 addresses are 128 bits wide, which expands to a maximum of
340,282,366,920,938,463,463,374,607,431,768,211,456 unique addresses, or 3�4×1038. This
is 4 times the number of bits or 79,228,162,514,264,337,593,543,950,336 times the number
of IPv4 unique addresses. Given the Earth’s population of around 7 billion people, this is
48,611,766,702,991,209,066,196,372,490 �4�8×1028� addresses per person on the planet (see
Table 4.1). Assuming the Earth’s surface is 511,263,971,197,990 square meters, then this
is 665,570,793,348,866,943,898,599 �6�6 × 1023� addresses per square meter of the Earth’s
surface.

As in IPv4 and other numbering systems like the telephone numbering system, we will
not be able to use all of this address space efficiently. Even worst, we are using a significant
part of the address space for protocol use as described in the next sections. Nevertheless, we
still have a lot of address space (don’t ask me when the IPv6 addresses will be exhausted
� � � you never know � � � ).

Migrating to IPv6: A Practical Guide to Implementing IPv6 in Mobile and Fixed Networks Marc Blanchet
© 2006 John Wiley & Sons, Ltd



62 Migrating to IPv6

Table 4.1 IPv6 address space compared with Earth metrics

Metric Value IPv6 address space

Earth population ∼ 7 billion 4�8×1028 addresses per person on the earth
Earth surface 5�1×1014 square meters 6�6×1023 addresses per square meter of the earth

4.2 Format of an Address

IPv4 addresses are represented in text as 4 fields of decimal numbers, from 0 to 255,
representing 8 bits each, such as 192.0.2.156. Using the same representation technique
with IPv6 addresses will give 16 fields of decimal numbers, such as the following:
134.109.89.132.123.192.111.222.9.101.167.189.245.243.190, which is obviously pretty long
and prone to errors when typing. Don’t use this format, it is illegal in IPv6! IPv6 uses
hexadecimal notation to better compress the representation of addresses. Rules are also
introduced to compress the representation even more.

4.2.1 Text Representation of Addresses

IPv6 addresses are represented as 8 fields of hexadecimal numbers (0–F), each field repre-
senting 16 bits using 4 hexadecimal digits and fields are separated by a colon ‘:’ [RFC3513].
For example, 2001:0000:1234:0000:0000:C1C0:ABCD:0876 is a valid address.

The following rules can be applied to address representations:

(a) Letters are case-insensitive. For example, ‘AB09’ equals ‘ab09’.
(b) Leading zeros in a field are optional. For example, ‘00c1’ equals ‘c1’.
(c) Successive fields of ‘0’ are represented as ‘::’, but only once in an address.1

For example,

2001 � 0000 � 1234 � 0000 � 0000 � C1C0 � ABCD � 0876

can be represented, using rule a), by:

2001 � 0000 � 1234 � 0000 � 0000 � c1c0 � abcd � 0876

which can be compressed using rule b) to:

2001 � 0 � 1234 � 0 � 0 � c1c0 � abcd � 876

which can be further compressed using rule c) to:

2001 � 0 � 1234��c1c0 � abcd � 876

1 Why? A parser that sees a ‘::’ in an address will do the following: expand the other parts of the address, count
128 bits – the number of bits in the other parts – and assign 0 to the remaining bits. A parser that reads an address
which has multiple ‘::’ cannot guess how many 0s were in the original non-compressed address.
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Table 4.2 Examples of address representation

Full representation Compact representation

2001:0000:1234:0000:0000:C1C0:ABCD:0876 2001:0:1234::c1c0:abcd:876
3ffe:0b00:0000:0000:0001:0000:0000:000a 3ffe:b00::1:0:0:a
FF02:0000:0000:0000:0000:0000:0000:0001 ff02::1
0000:0000:0000:0000:0000:0000:0000:0001 ::1
0000:0000:0000:0000:0000:0000:0000:0000 ::

which is a much more compact written form of the same address. Note that rule c) can only
be applied once in an address. Any address containing more than one ‘::’ is invalid.

Table 4.2 contains examples of applying the above rules to various addresses.
Note that the full representation, as well as any compressed forms, are all valid address

representations.

4.2.2 Text Representation of Prefixes

A prefix represents a range of addresses. The format is <address>/<prefix length>. The
prefix length identifies the separation of the address. There is no limitation nor boundaries
on the prefix length, as in IPv4 with Classless Interdomain Routing [RFC1519].

In the context of separating the network part and the host part of an address, the pre-
fix length represents the equivalent of the IPv4 subnet mask. For example, a host with
3ffe:b00:c18:1::1/64 identifies the first 64 bits (from the /64) as the network number
(3ffe:b00:c18:1 or 3ffe:0b00:0c18:0001) and the remaining 64 bits �128 − 64 = 64� as the
host part (0000:0000:0000:0001). If 3ffe:b00:c18:1::1/124 is used, then the network part has
124 bits and the host part has 4 bits �128−124 = 4�.

In the context of a site address space, such as 3ffe:0b00:c18::/48, the prefix represents the
range of addresses available for numbering the networks and the hosts.

Table 4.3 shows examples of prefixes.

4.2.3 Addresses in URL

Uniform Resource Locators (URL) [RFC3896] usually contain domain names, such
as http://www.example.com/example.html instead of IP addresses like http://192.0.2.1/
example.html. If one uses a port number with an IPv4 address, it is written as:
http://192.0.2.1:8080/example.html.

IPv6 addresses use the colon ‘:’ as field separator and URLs use the colon ‘:’ to separate
the IPv4 address to the port number, which makes both incompatible with IPv6.

Table 4.3 Examples of Prefixes

Prefix Left Part Right Part

3ffe:b00:c18:1::1/64 3ffe:0b00:0c18:0001:0000:0000:0000:0001
3ffe:b00:c18:1::1/124 3ffe:0b00:0c18:0001:0000:0000:0000:0001
3ffe:b00:c18:1::1/40 3ffe:0b00:0c18:0001:0000:0000:0000:0001
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Table 4.4 Examples of URLs with IPv6 addresses

Address URL

2001:0:1234::c1c0:abcd:876 http://[2001:0:1234::c1c0:abcd:876]/test.html
3ffe:b00::1:0:0:a ftp://[3ffe:b00::1:0:0:a]/test.txt
::1 ftp://[::1]
3ffe:b00::1:0:0:a on port 8080 with http http://[2001:0:1234::c1c0:abcd:876]:8080/test.html

An IPv6 address in a URL must be enclosed in square brackets: ‘[’ and ‘]’ [RFC3986].
Table 4.4 shows some examples of URLs with IPv6 addresses.

Obviously, users prefer to type domain names instead of IP addresses in URLs, even more
with IPv6!

The important consequence of adding square brackets in URLs is that all applications
parsing URLs must be modified to support IPv6 URLs.

Some command-line shells consider the brackets as special characters, so these IPv6
brackets have to be escaped when used as arguments of commands. The following is an
example of the ftp command on FreeBSD within a csh shell.

% ftp http://[3ffe:b00:c18:1::10]:80/index.htm
ftp: No match.
% ftp ‘http://[3ffe:b00:c18:1::10]:80/index.htm’
Requesting http://[3ffe:b00:c18:1::10]:80/index.htm
100% |******************************| 11196 00:00 ETA
Successfully retrieved file.
%

The first try, without escaping the brackets, makes the shell try to expand the brackets to
some local filename which obviously does not exist, so it responds with ‘no match’ (of a
file). By escaping the whole URL inside apostrophes (’), the HTTP request succeeds.

4.3 Unicast Addresses

Three kinds of addresses exist in IPv6: unicast, multicast and anycast. Unicast addresses
are used for communications between two nodes. A unicast address is a one-to-one address.
Multicast addresses are used for communications between one node and many nodes and
anycast addresses are used for communications between one node and the nearest node
among a group of nodes.

Multicast addresses start with ‘ff’ as the leftmost octet. Any other value of the leftmost
octet (‘00’ to ‘fe’) identifies a unicast address. Anycast addresses are formed using the
unicast address space, so they cannot be distinguished from unicast addresses.

4.3.1 Global Unicast Addresses

Global addresses are used for communications between nodes on the Internet. They are
the normal addresses that every node uses. These addresses, called global unicast addresses
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[RFC 3513], are currently assigned as 001 as the 3 leftmost bits in the 128 bit address. This
corresponds to addresses from 2000:: to 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff, or 2000::/3.

This address space has been defined to use the leftmost 64 bits for the network prefix and
the rightmost 64 bits for the host part. So, except in specific cases, all subnets in IPv6 have
the same prefix length of 64 bits (/64). The host part, now precisely named as the interface
identifier because hosts and interfaces may have multiple addresses, is based on the IEEE
EUI-64 standard described in Section 5.2.1.

Important to remember:

All subnets in the global unicast address space 2000::/3 have the same prefix length of
64 bits (/64).

IPv6 enforces the use of provider-based addresses. This means that an organization cannot
get an IP address block directly from a registry, but will get it from its upstream provider.
The main benefit is the aggregation of prefixes done by the providers which results in a
smaller global routing table. However, multiple peerings and multihoming may annihilate
this aggregation, as discussed in Section 9.11.

As shown in Figure 4.1, the basic structure of a global unicast address contains 3 parts,
from left to right:

(a) The leftmost part has a length of 48 bits and is the prefix allocated by the provider
to a site. The details of allocation and assignments inside the 48 bits are discussed in
Section 23.3.1.

(b) The middle part has a length of 16 bits and contains the subnet numbers inside a site.
216 subnets are available inside any site.

(c) The rightmost part has a length of 64 bits and contains the host part, also called inter-
face identifier. This identifies the host in the subnet. 264 addresses are available for
hosts in each subnet. This is a very large space spend, but it enables autoconfigura-
tion by embedding the MAC address in this part of the IP address, as described in
Section 5.2.1.

The important consequences of this structure are:

(a) /64 is the separation between the network and the host parts. Contrary to IPv4, IPv6 uses
fixed length subnet masks.2

Prefix from provider Site
subnets Host part: interface identifier

48 16 64

Figure 4.1 Basic structure of an address

2 There are some exceptions to this, but the generic case is /64.
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(b) /48 is the separation between the provider prefix and the site. Contrary to IPv4, IPv6
always uses 16 bits for subnet numbers in a site.

(c) These boundaries are fixed. All sites receive a /48 and all subnets are using a /64.

Important to remember:

Any site, of any size, receives a /48 prefix. All subnets have a fixed /64 prefix.

With IPv4, organizations have many constraints and complications with subnet masks and
the lack of address space, so network managers have to use tricks such as variable-length
subnet masks and secondary addresses on routers to support multiple subnets on the same
link. These issues are all gone. In IPv6, an address plan for a site is very easy: one could
start numbering each subnet using the 16 bit site space, which means a maximum of 216

subnets in a site. Each subnet can contain up to 264 nodes, which means there is no need
to have multiple subnets on the same link for the purpose of adding nodes on the same
link. The only concern one may have about subnet addresses is to locate appropriately
the subnet numbers to do aggregation of routes in the internal routing protocol. An opti-
mized algorithm for an addressing plan for providers, organizations or sites is discussed in
Section 23.3.1.

4.3.2 Scoped Addresses

IPv6 introduces scopes in the address space: link and site scopes.

4.3.2.1 Link-local

Link-local addresses are scoped addresses restricted to the link: they can only be used on
the specific link connected to the interface. In other words, they can only be used between
two nodes on the same link and are never forwarded by a router.

The structure of a link-local address is ‘fe80:0:0:0:<interface identifier>’, as shown in
Figure 4.2. Link-local addresses are automatically configured on each IPv6-enabled interface,
using the IEEE EUI-64 format for the interface identifier, as described in Section 5.2.1.

By automatically configuring interfaces with link-local addresses, the communication
between nodes is enabled on the same link, without any manual configuration of these
interfaces. For example, one can setup an ad hoc LAN of IPv6 devices communicating

Interface identifierfe80 0

64 64

Figure 4.2 Link-local address structure
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together without any DHCP server or any router and without any manual configuration. By
having the link-local address as the source address, the other nodes can reply directly to that
valid IP address.

Important to remember:

Link-local addresses have the scope of the link, are automatically configured on each
interface and are defined as: fe80::<interface identifier>.

Two separate links use the same fe80:0:0:0::/64 link-local prefix, as shown in Figure 4.3.
Nodes A and B can communicate together, as well as C and D. But the router R does

not forward a datagram containing link-local addresses, so A or B cannot communicate
with C or D.

Hint on troubleshooting connectivity between two nodes on the same link:

To troubleshoot the connectivity between two IPv6 nodes on the same link, use the
link-local addresses of their interfaces, since they do not rely on router advertisements
or DHCP servers.

Care should be taken not to advertise link-local addresses in DNS entries or outside a
link, since they are only valid within a link.

Link-local addresses are often used in protocols when there is a need for link-local scope
exchanges between two nodes.

fe08::212:6bff:fe3a:9e9a fe80::212:6bff:fe54:f99a

fe80::245:bcff:fe47:1530fe80::212:6bff:fe17:fc0f

A B

C

R

D

Figure 4.3 Link-local use on different links
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4.3.2.2 Scope Ambiguity

In Figure 4.3, if router R wants to send a packet to a link-local address (fe80::), the interface
to send the packet is ambiguous: the packet can be sent to any of the links, since the link-
local prefix is identical on each link. To resolve the scope ambiguity, the user has to specify
the interface. In many implementations, the user adds the ‘%’ character after the address
and then adds the interface name or number. For example, on FreeBSD, one would type:
ping fe80::245:bcff:fe47:1530%fxp0 to send a packet on the fxp0 interface. The interface
specification is generalized to the concept of zones [RFC4007].

4.3.2.3 IPv4 Link-local

Microsoft and Apple proposed for use and implemented the 169.254/16 range [RFC3927]
in IPv4 for a similar use, but the current IP stacks allow no special processing with these
addresses. There is no easy way to retrofit this functionality in IPv4: current routers will
forward these addresses since they are not aware of this new special IPv4 range semantic.
Moreover, because IPv4 interfaces usually have only one IP address, the stack and applica-
tions have difficulty handling the switch over to a normal IPv4 address, for example when
a DHCP server appears to be available and giving addresses.

4.3.2.4 Unique Local Address Space

Unique local addresses [RFC4193] are unicast addresses, globally unique but used locally
within a site. Any site can have /48 for its private use. Each /48 is globally unique, so no
collision of identical address space is possible in the future when two organizations connect
together their sites.

The structure of a unique local address is ‘fdUU:UUUU:UUUU:<subnet
number>:<interface identifier>’ where U indicates bits of a unique identifier, as shown in
Figure 4.4. The unique identifier is assigned to a site.

The <subnet number> is a 16 bit field that can be used to number the site subnets. This
field has the same length and is located at the same place as in a global address. The unique
local prefix (/48) is similar to a provider-based /48 prefix, but for private use.

To create the unique identifier part (bits 9 to 48) for the fd00::/8 address space, the
organization should generate the random number using the specified algorithm [RFC4193],
which guarantees sufficient randomness to minimize collisions. The book website has a
program to generate unique local prefixes.

fd Unique Identifier Interface IdentifierSite
subnets

48

408 16 64

Figure 4.4 Unique local address structure
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Consequences of unique local addresses are:

• Any site can use a /48 from fd00::/8 as its prefix for its site numbering.
• Local devices that do not need to be known outside, like printers, can be addressed using

unique-local addresses.

Hint for site numbering:

One way to deploy IPv6 in a site is to start using the unique local numbering, by
numbering the subnets with the 16 bit field. When the site connects to a provider and
receives a prefix from the provider, the provider prefix is advertised inside the network.
The same subnet numbers are used. The site can either use both address spaces or can
withdraw the unique-local addresses.

4.3.2.5 IPv4 Private Address Space

IPv4 has a private address space [RFC1918], namely 10/8, 172.16/12 and 192.168/16, for a
similar use. Owing to the address space exhaustion, the need for provider independence and
the impression of security through hidden addresses, most organizations use IPv4 private
addresses while connecting to the IPv4 Internet using network address translation at the
border gateway.

However, IPv4 is designed for only one IP address per interface, which disables the
node to use private address space for internal connections, and global addresses for global
connections, as possible in IPv6.

4.3.3 Protocol Use Addresses

Some unicast addresses are defined to trigger specific behavior in the protocol. The 6to4
addresses are used for automatic tunnels and the IPv4-mapped addresses are used for repre-
sentation of IPv4 addresses as IPv6 addresses.

4.3.3.1 6to4

6to4 is one mechanism to establish automatic IPv6 in IPv4 tunnels and to enable complete
IPv6 sites to be connected through automatic tunnels.

A 6to4 address has the following structure: 2002:<ipv4 address>:<subnet>:<interface
identifier>, as shown in Figure 4.5. Since it starts with 2002, it is a unicast address and
conforms to the structure of the global addresses, as discussed in Section 4.3.1.

The <ipv4 address> field is 32 bits wide and contains the IPv4 address of the border
router of the IPv6 site connected using 6to4. The <subnet> field is 16 bits wide and is
used for numbering the subnets within the site. The rightmost 64 bits are for the interface
identifier.

The 6to4 mechanism is an optional transition mechanism, so not all IPv6 stacks have
implemented it. In the context of a complete site, only the border router needs to implement
6to4. This mechanism is further discussed in Section 16.2.5.
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2002 Site
subnets Interface identifierIPv4 address of

border router

48 16 64

Figure 4.5 6to4 address structure

4.3.3.2 IPv4-mapped Address

IPv4-mapped addresses are used inside applications to represent an IPv4 address of a node
using the IPv6 format. This enables the application to care only about the IPv6 address
format, the IPv4 address being a special case of an IPv6 address.

An IPv4-mapped address has the following structure: 0:0:0:0:ffff:<ipv4 address>, as
shown in Figure 4.6.

These IPv4-mapped addresses should not be used as a source or destination address of
generic IPv6 datagrams: they are used internally within the kernel, applications and API on
the nodes.

4.3.4 Unspecified Address

IPv4 stacks sometimes use 0.0.0.0 as a placeholder when no address is known or to specify
the default route in routing tables. The address ‘0:0:0:0:0:0:0:0’ or ‘::’, as shown in Figure 4.7,
is the equivalent in IPv6 and is called the ‘unspecified’ address.

It is used in preliminary communications such as in the duplicate address detection process,
described in Section 6.3.

For example, the netstat -A inet6 -r -n command shows the IPv6 routing table of
a Linux host.

% netstat -A inet6 -r -n | grep ‘::/0’
Kernel IPv6 routing table
Dest Next Hop Flags Metric Ref Use Iface
::/0 fe80::200:d1ff:feed:ac3 UGDA 1024 25 1 eth0

This extract of the routing table shows the unspecified address as the default route (::/0) for
the destination, pointing to the default router fe80::200:d1ff:feed:ac3 as next hop through
the eth0 interface.

80

0 ffff

16 32

IPv4 address

Figure 4.6 IPv4-mapped address structure



Addressing 71

128

0

Figure 4.7 Unspecified address representation

127 1

10

Figure 4.8 Loopback address representation

4.3.5 Loopback Address

IPv4 defines the loopback address as 127.0.0.1. This enables an IP stack to verify connectivity
with itself, without going on a physical interface.

IPv6 defines the loopback address as ‘0:0:0:0:0:0:0:1’, or ‘::1’, as shown in Figure 4.8.
The IPv4 semantic applies to IPv6: it is used to identify itself.

Hint for verifying an IPv6 stack:

To find if an IPv6 stack is functioning properly, ping the loopback address of the node:
ping6 ::1.

4.4 Multicast Addressing

Multicast enables the efficient use of network bandwidth by sending the minimum number
of datagrams to the maximum number of nodes. On a local link, one multicast datagram is
sent to a possibly unlimited number of nodes. A special address prefix3 identifies a mul-
ticast datagram, and a specific address inside that prefix identifies each group of nodes.
For example, a videoconference would have one specific multicast destination address that
each node, listening to the videoconference, processes these multicast datagrams. This mul-
ticast address is often called a multicast group. Multicast is a one-to-many addressing
mechanism.

3 In IPv4, the multicast prefix is 224.0.0.0/8.
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Broadcast is a mechanism where all nodes should listen to every broadcast datagram
sent to the broadcast address.4 Even nodes that do not care for this specific datagram are
interrupted in order to process the broadcasted datagram. For example, routers exchange
routing information through broadcasts that cause an interrupt on all hosts, including those
that do not care about route exchanges.

IPv4 uses broadcasts for many purposes but IPv6 does not, using instead multicast. This
enables more fine grain targets of datagrams that have to be sent to many nodes on the
network. For example, IPv6 routers exchange information using a specific multicast address
identifying all routers. A host will not listen to that specific multicast address since it is not
a router.

The scope of multicast groups is important in order to limit the forwarding of these data-
grams to only the interested nodes. In IPv4, the scope of multicast datagrams is implemented
using the Time-To-Live (TTL) IPv4 header field in the multicast datagram, which defines
the scope based on the number of hops. In IPv6, the scope is implemented inside the address
of the multicast group, which has the key advantage that the use of the right scope is not
related to the number of hops, which may vary in real-time. Routers can easily enforce the
scope of the multicast traffic by looking at the scope of the multicast address.

Multicast addresses are assigned for temporary use, such as a one-hour videoconference,
as well as for permanent use like an address identifying all routers on a link. IPv6 includes a
bit in the address to identify permanent or temporary addresses. No such bit exists in IPv4.

The structure of an IPv6 multicast address is shown in Figure 4.9. An IPv6 multicast
address begins with ‘FF’ as the first octet.

The next 4 bits, shown as ‘L’ in Figure 4.9, contains a one bit flag identifying the lifetime
of the multicast group. If the multicast address is permanent as a permanent well-defined
group, then the bit is zero (0), otherwise it is temporary with a value of one (1). All other 3
leftmost bits are currently undefined and equal to 0. Table 4.5 shows the values of the ‘L’
4 bit field.

The next 4 bits, shown as ‘S’ in Figure 4.9, identifies the scope of the address. The bits
are assigned as listed in Table 4.6.

A scope value of 1 means interface-local scope, which is for multicasting inside a node,
like for inter-process communications. This address scope might not be used often. Link-
local scope (2) and site scope (5) have the same meanings as unicast scopes, described
in Section 4.3.2. A link-local scope multicast datagram is only valid on the local link and
should not be forwarded by routers. A site scope multicast datagram is only valid on the
site and should not be forwarded to the Internet or to another site by the site border router.

Muticast group identifier

11216

FF L S

Figure 4.9 Multicast address structure

4 In IPv4, the broadcast address is all 1s in the host part of the address for a subnet. If the subnet is 192.0.2.0/24,
then the broadcast address on that subnet is 192.0.2.255, where 255 is all 1s in the host part.
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Table 4.5 Permanent group bit in a multicast address

Value of L (4 bits binary) Value of L (4 bits hex) Description

0000 0 Permanent group
0001 1 Temporary group

Table 4.6 Scope bits in a multicast address

Value of S (4 bits binary) Value of S (4 bits hex) Scope description

0001 1 Interface
0010 2 Link
0100 4 Admin
0101 5 Site
1000 8 Organization
1110 E Global
All others Unassigned or reserved

Organization-local scope (8) is for an organization that has multiple sites. Global scope is
for the whole Internet. All other possible values are undefined or reserved.

Important to remember:

Multicast addresses have bits in the address to specify the lifetime �L� and the scope �S�
of the multicast group and are defined as: ff<L><S>:<multicast group identifier>.

Permanent multicast addresses are assigned by IANA[IANAMULTICASTADDRESS],
but many of them have been predefined in the specifications [RFC2375, RFC3513]. Tem-
porary addresses are used on demand without any prior registration or assignment.

Table 4.7 lists some of the permanent assignments. Section 15.7 lists most current
assignments.

Hint for discovering the nodes of a link:

To discover all the nodes on a link, ping the multicast address of the ‘all-nodes’ on the
link: ping6 ff02::1.

Multicast is discussed in Chapter 15.
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Table 4.7 Permanently assigned multicast addresses

Multicast address Scope Group Description

FF01::1 1 = interface ::1 = All nodes All nodes on the interface
FF02::1 2 = link ::1 = All nodes All nodes on the link
FF01::2 1 = interface ::2 = All routers All routers on the interface
FF02::2 2 = link ::2 = All routers All routers on the link
FF05::2 5 = site ::2 = All routers All routers in the site
FF02:0:0:0:0:1:FFXX:XXXX 2 = link Solicited-node. See Section 6.1

4.5 Anycast

Anycast enables the sending of a datagram to one node belonging to a group of nodes that
are either on the same subnet, or topologically located on different links on a network. The
routing identifies one or many nodes in the group that will receive the datagrams. It could
also be used to provide a global address but routed to the nearest server for that anycast
address, thus enabling redundancy and optimum routing for distributed servers.

The anycast mechanism is used for discovery of services on a network or to provide a
redundancy and closest service. Two anycast groups are currently defined:

• Routers must join the all-routers-in-the-subnet anycast group so that nodes can find a
router on the subnet.

• MobileIPv6 uses an anycast group to locate a home-agent in the home network, as
explained in Chapter 11.

An anycast address starts with the prefix of the targeted network followed by the host
part that identifies the anycast group. An anycast address looks just like a regular unicast
address. Anycast addresses can only be used as destination addresses. Section 15.8 describes
the anycast mechanism.

4.6 Addressing Architecture

Table 4.8 shows a summary of most types of addresses and their basic structure.
Table 4.9 shows a summary of the current assignments of the address space for all types

of addresses described previously.
One has to remember that in IPv4, the subnet broadcast is all 1s in the host part. There is

no pre-defined meaning of the value 0 or 1 in any bit of an IPv6 address.
Figure 4.10 shows a pie-chart representation of the address space. Note that 86% of the

space is unassigned and undefined.
13% of the address space is currently assigned to the use of global unicast addresses.

This does not mean they are currently used. It only says that this space is reserved to be
allocated for Internet use. The Internet might take a while to consume all this reserved
address space. To get a sense of the size, the reserved space for allocation is 13% of the
IPv6 address space, but corresponds to 2�128−3−32� = 9� 903� 520� 314� 283� 042� 199� 192�
993� 792 �9�9 × 1027� times the full IPv4 address space. This 13% also corresponds
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Table 4.8 Types of addresses

Type Structure (16 bit boundaries)

Unicast global <provider prefix> subnet <interface identifier>
Link-local fe80 0 <interface identifier>
Unique-local fc00 0 subnet <interface identifier>
Unique-local fd00 0 subnet <interface identifier>
IPv4-mapped 0 ffff <ipv4 addr>
6to4 2002 <ipv4 addr> subnet <interface identifier>
Unspecified 0
Loopback 0 0001
Multicast ff<ls> <multicast group>

Table 4.9 Current assignments of the address space

Prefix (binary) Start (hex) End (hex) Usage Space used (%)

0000 0000 0000:: 00ff:ffff:ffff:ffff:ffff:ffff:ffff:ffff Unspecified,
localhost.

0�3

0000 0001 0100:: 01ff:ffff:ffff:ffff:ffff:ffff:ffff:ffff Unassigned 0�3
0000 001 0200:: 03ff:ffff:ffff:ffff:ffff:ffff:ffff:ffff Unassigned 0�6
0000 010 0400:: 05ff:ffff:ffff:ffff:ffff:ffff:ffff:ffff Unassigned 0�6
0000 011 0600:: 07ff:ffff:ffff:ffff:ffff:ffff:ffff:ffff Unassigned 0�6
0000 1 0800:: 0fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff Unassigned 3
0001 1000:: 1fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff Unassigned 6
001 2000:: 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff Unicast global,

6to4, Anycast
13

010-110 4000:: dfff:ffff:ffff:ffff:ffff:ffff:ffff:ffff Unassigned 60
1110 e000:: efff:ffff:ffff:ffff:ffff:ffff:ffff:ffff Unassigned 6
1111 0 f000:: f7ff:ffff:ffff:ffff:ffff:ffff:ffff:ffff Unassigned 3
1111 10 f800:: fbff:ffff:ffff:ffff:ffff:ffff:ffff:ffff Unassigned 1
1111 110 fc00:: fdff:ffff:ffff:ffff:ffff:ffff:ffff:ffff Unique-local 0�6
1111 1110 0 fe00:: fe7f:ffff:ffff:ffff:ffff:ffff:ffff:ffff Unassigned 0�2
1111 1110 10 fe80:: febf:ffff:ffff:ffff:ffff:ffff:ffff:ffff Link-local 0�1
1111 1111 ff00:: ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff Multicast 0�3

to 2�64−3� = 2� 305� 843� 009� 213� 693� 952 �2�3 × 1018� subnets on the Internet or 2�48−3� =
35� 184� 372� 088� 832 �3�5×1013� sites. If the Internet consumes even all this 13%, there is
still 6 times more space unassigned!

The unassigned space can be defined in the future with different requirements. For example,
the current unicast space defines a fixed boundary of 64 bits for the network part and 64 bits
for the host part of an address. In the future, the IETF might decide to define a new address
structure and identify another part of the address space to use that new address structure.
This gives us room for finding new ways of using the address space or changing our mind
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Figure 4.10 Address space utilization

if the current one has issues that we may discover in the future. This also means that the
current IPv6 implementations in hosts and routers must not guess the address structure for
the unassigned space.

4.7 Summary

IPv6 addresses are 128 bits wide, which expands to a maximum of 340,282,366,920,938,463,
463,374,607,431,768,211,456 unique addresses. IPv6 addresses are represented as 8 fields
of hexadecimal numbers (0–F), each field representing 16 bits using 4 hexadecimal dig-
its and fields are separated by a colon ‘:’. For example, 2001:0000:1234:0000:0000:
C1C0:ABCD:0876 is a valid address.

Unicast global addresses are defined within 2000::/3, where /64 is a link and /48 is
a site. Link-local addresses are defined as fe80::<interface identifier>, are of link scope
and autoconfigured on each interface. Unique-local addresses are defined fd00::<subnet
number>:<interface identifier>, are of site scope and not autoconfigured.

Multicast addresses are defined with ff<L><S>::/16, where the L bit is the lifetime of
the multicast group and the S bit defines the scope of the multicast group.

Unicast global address assignment uses 13% of the address space. The remaining 86% is
unassigned and undefined.
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5
Configuring Node Addresses

While IPv6 introduces new features, it inherits most of the attributes of IPv4 and does not
prohibit the features available in IPv4. For example, an IPv6 node can be autoconfigured by
the new IPv6 mechanism, but can still be configured manually or by a DHCP server, as in
IPv4.

This chapter presents static, server-based and autoconfiguration of addresses on interfaces.
It describes the router advertisements and solicitations that are part of the autoconfiguration
process. DHCP is also described as another method for providing configuration data to hosts.
The end of the chapter shows examples of major implementations.

5.1 Static Address Configuration

Static configuration means assigning the information, in a static file or on a command line,
needed for the host to configure itself. At a minimum, this includes the IP address, prefix
length (or subnet mask) and DNS servers. IPv6 nodes can be configured manually as IPv4
nodes.

The following example shows the FreeBSD command ifconfig to configure a static
IPv6 address (3ffe:b00:0:1::a) and the /64 prefix length on an interface (fxp0) using
the inet6 address family.

# ifconfig fxp0 inet6 3ffe:b00:0:1::a/64

5.2 Address Auto-Configuration

A key new feature of IPv6 is autoconfiguration [RFC2462], where nodes configure themselves
without prior static configuration as soon as they are connected on a network. Their first task is
to find their address by concatenating the prefix of the network with the host part of the address.

Migrating to IPv6: A Practical Guide to Implementing IPv6 in Mobile and Fixed Networks Marc Blanchet
© 2006 John Wiley & Sons, Ltd
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IPv6 uses the uniqueness of link-layer addresses by inserting the link-layer address of the
interface inside the host part of the address. The layer 2 address (e.g. Ethernet MAC address) is
effectively embedded in the layer 3 (e.g. IP) address. This mechanism, called interface identifier,
should avoid simultaneous use of the same address chosen by two nodes on the same link.

5.2.1 Interface Identifier

Figure 5.1 shows the process of composing an interface identifier. The IEEE EUI-64
[IEEEEUI64] procedure is used with a slight change.

1. The link-layer address is extracted from the interface. The example shows a 48 bit Ethernet
address: 00:12:6b:3a:9e:9a.

2. The 16 bit ‘fffe’ string is inserted in the middle of the 48 bits, which results in a string
of 64 bits. ‘fffe’ is reserved by IEEE specifically to convert a 48 bit MAC address into a
64 bit address.

3. The second bit of the leftmost octet is used to identify the uniqueness of the MAC address.
It is set to 1 if the MAC address is unique. A MAC address may be not unique if the
administrator of the node changes the MAC address of the interface, which is not useful
to do in most cases.

1. MAC address 00 12 6b

48

ff

16

64

000000X0
X = 0 if non-unique MAC address
X = 1 if unique MAC address

fe

ff fe

00 12 6b

00 12 6b

3a 9e 9a

3a 9e 9a

3a 9e 9a

ff fe02 12 6b 3a 9e 9a

2. Insert 16 bits: fffe

3. Uniqueness bit

Prefix Interface indentifier

64 64

Figure 5.1 Composing an interface identifier
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This new 64 bit address is called the interface identifier and is used as the host part of an
IPv6 address. The leftmost 64 bits are the prefix of the network.

Important to remember:

For typical hardware interfaces, the interface identifier is formed by inserting fffe in
the middle of a 48 bit MAC addresses and placing a ‘1’ in the 7th leftmost bit. This
generates a 64 bit interface identifier to be used in the IPv6 address.

IEEE manages the assignment of the MAC addresses. The first 24 bits (of the 48 bits)
are assigned by the IEEE registration authority to interface manufacturing companies. The
other 24 bits are assigned by the company. IEEE reserved FFFF and FFFE for inserting
48 bit addresses in 64 bit addresses. IEEE intends to define 64 bit MAC addresses in future
protocols, since the 48 bit space is being consumed rapidly. By reserving 64 bits in the
address, IPv6 autoconfiguration is ready for the IEEE 64 bit MAC addresses.

Many addresses are composed using the EUI-64 interface identifier. All autoconfigured
addresses on the same interface will have the rightmost 64 bits identical, but the leftmost
64 bits will be different.

5.2.2 Router Advertisements and Solicitations

Node autoconfiguration works by concatenating the prefix of the network to the interface
identifier described in the previous section. The prefix of the network is sent by the routers
in router advertisements. These router messages are part of a protocol named Neighbor
Discovery (ND) which takes care of most interactions on the local link between hosts and
routers and between hosts.

Neighbor discovery uses ICMP for its transport, so neighbor discovery messages are
effectively ICMP messages. Neighbor discovery is described in Section 7.2.

5.2.2.1 Router Advertisement

Router advertisement (RA) messages are sent by the routers to inform the hosts about the
link information so the hosts can autoconfigure themselves. The key information included is
the prefix(es) of the link and the default router(s).

These messages are sent periodically every 5 minutes by the routers to all nodes on the
link.1 The source address of these router advertisement (RA) messages is the link-local
address of the interface of the router and the destination address is FF02::1, the all-nodes on
the link multicast address. All nodes process that datagram. Unless specifically prohibited
by configuration, routers send advertisements on all their interfaces.

1 The periodicity is randomized in order to avoid simultaneous advertisements sent by multiple routers. The default
range of periodicity is from ∼200 to 600 seconds.
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RA: prefix =
3ffe:b00:0:1::/64

RA: prefix =
3ffe:b00:0:2::/64

FF02::1

A B
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R1
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Figure 5.2 Router advertisements

Figure 5.2 shows the R1 router advertising the 3ffe:b00:0:1::/64 prefix to all hosts on
LAN1, which includes hosts A and B. R1 also advertises 3ffe:b00:0:2::/64 to the other LAN.

If host A has a MAC address of 00:12:6b:3a:9e:9a, then its interface identifier is
0212:6bff:fe3a:9e9a as shown in Figure 5.1. After receiving the RA of the 3ffe:b00:0:1::/64
prefix from R1, the host A configures the assembled 3ffe:b00:0:1:212:6bff:fe3a:9e9a IPv6
address on its network interface.

All nodes configured to use autoconfiguration always listen to the router advertisements.
Each time an advertisement is received, the nodes parse the information and configure
themselves accordingly. This enables easy renumbering of nodes, as described in Section 5.3.

Important to remember:

All nodes configured to use autoconfiguration always listen to the router advertisements
and process them immediately when received.

Table 5.1 shows the typical fields found in the router advertisement. The detailed field
list is described in Section 5.9.1.

A router can send multiple prefixes in the same advertisement. The nodes will then
autoconfigure their interface with all prefixes sent by the RA.

Table 5.1 Router Advertisement Datagram Typical Fields

Field Description

Source address Link-local address of the router interface sending the router advertisement.
Destination address All-nodes on the link multicast address (FF02::1)
ICMP type Value = 134. Identifies a router advertisement.
Prefix One or more prefixes with associated lifetimes, onlink, managed bits and

other info.
Router lifetime Identifies if the router is a default router.
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Important to remember:

An IPv6 node usually has multiple addresses per interface, many of them can be made
from the router advertisements.

Two lifetimes, preferred and valid, are associated with each prefix. This is to help renum-
bering as discussed in Section 5.3.

A router can also identify itself as a default router, using the router lifetime field: a value
of 20 minutes (expressed in seconds in the specification as well as in most implementations)
means that the router can be used by the hosts as a default router for the next 20 mins.
Since this value is resent with every router advertisement, the value will then be refreshed
by the hosts so the router will always be a valid default router. The advertised value should
be large enough to keep the router as default router even if the router advertisements are not
received for a few cycles. If the value is zero, the router sending the advertisement should
not be used as a default router.

5.2.2.2 Multiple Routers Sending Router Advertisements

If a node receives RAs from multiple routers on the link, it makes the union of these
advertisements. Router R1 sending one prefix and R2 sending another prefix makes the node
autoconfigured with the two prefixes.

If both routers advertise themselves as default router (router lifetime in RA not equal to
zero), then the node either decides to pick one and always use the same one or do some
round robin cycling between the default routers. This is the choice of the implementation,
but most implementations use the same router until it comes unreachable, where it switches
to a new default router.

5.2.2.3 On-link in Router Advertisements

The on-link parameter is sent inside router advertisements. It specifies if the prefix is valid
on the link. Nodes will send a direct neighbor solicitation (see Section 6.2) to on-link
destinations, but will send packets to the default router for off-link destinations. If the on-link
parameter is not set for a specific prefix, then nodes on the link sending to a destination
with this off-link prefix, send the packet to the default router and do not perform neighbor
solicitation. This is used to force the forwarding to some prefixes to go through the router.
A good example of its use is multilink subnets, described in Section 6.8, and mobileIP,
described in Section 11.12.

5.2.2.4 Router Solicitation

As soon as a router advertisement is sent, all nodes on the link process it and configure
themselves accordingly. These advertisements are sent every five minutes. When a node is
booting, it might not be lucky if the advertisement might has been sent just a few seconds
before. It would have to wait for the next advertisement, in four minutes, to autoconfigure
itself. In order to receive a router advertisement immediately during its booting sequence, the
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Figure 5.3 Router solicitation

Table 5.2 Router Solicitation Datagram Typical Fields

Field Description

Source address Link-local address of the node if available or :: (unspecified) if link-local
not available.

Destination address All-routers on the link multicast address (FF02::2)
ICMP type Value = 133; identifies a router solicitation.

node sends a router solicitation (RS) message to all routers on the link, requesting them to
send router advertisements straight away so the node can autoconfigure itself immediately.

Figure 5.3 shows node B sending a router solicitation to all routers on the link (FF02::2).
Then routers R1 and R2 send their router advertisement to all nodes on the link (FF02::1).
All nodes on the link listen to these router advertisements and configure their interface
accordingly. The booting node B autoconfigures itself right away instead of waiting for the
next scheduled router advertisement.

Table 5.2 describes the typical fields in the router solicitation message. The detailed field
list is described in Section 5.9.1.

The source address of the node could be either the unspecified address (::) or the link-local
address. Since nodes can send traffic with a link-local source address and link-local addresses
are used by protocols, implementations usually start by using the link-local address and
then ask for router solicitation for the other addresses. So the source address of the router
solicitation is usually the link-local address, unless it cannot be used.

5.3 Lifetime of Advertised Prefixes

In IP networks, as well as in telephone networks, there is always a trade-off between the
ownership of an address space and the routing efficiency of a global network.

If the address space of an organization is independent of the provider, often called portable
addresses, then the provider has to announce that address space to the Internet. If all
organizations own their address space, then the number of route entries in the global routing
table is equal to the number of organizations, which may be a very large number in the long
run. This is generally considered as non-scalable or at least a difficult engineering challenge.

The way to decrease this global routing problem is to keep the ownership of the organiza-
tion’s address space in the hands of the provider. In other words, an organization receives its
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address space from its provider. If the organization changes provider, then it receives a new
address space from the new provider and the former provider reassigns the old address space
to other customers. There are at least two implications: the minimization of the global routing
table since the number of route entries would be somewhat proportional to the number of
providers, and so orders of magnitude smaller than if all organizations owned their address
space; the trouble and inconvenience of renumbering the network of the organization when
it changes provider.

Until the mid-1990s, the IPv4 addresses were allocated to organizations so they owned
their address space. The global routing table explosion meant that the policy changed to
allocate addresses only to providers. Organizations now do not own their IPv4 address space
and have to renumber when they change provider.

In IPv4, there is no provision or mechanism for handling renumbering, so renumbering
an IPv4 network is a real pain. Today, organizations try to avoid renumbering in IPv4 using
the following possibilities:

• For those organizations that have portable addresses, they keep using it.
• For those organizations that do not, they use private addresses [RFC1918] with network

address translation. Only the computers directly reachable from the Internet which are
assigned public addresses from the provider, like Web servers and firewalls, have to be
renumbered if they change providers.

Good news! IPv6 includes mechanisms for renumbering hosts and routers, which helps
organizations when they have to renumber.

In autoconfiguration mode as well as in DHCP, the 64 bit network prefix received by the
node in the router advertisements has two associated lifetimes: the preferred and the valid
lifetimes.

The valid lifetime is the lifetime of the prefix. After the lifetime is expired, the address,
composed of the prefix and the interface identifier, must not be used. The preferred lifetime
is the period where the address is a preferred address. When the preferred lifetime is expired
but the valid lifetime is not expired, the address can still be used but is not preferred: it is
deprecated. The address should not be used for new communications initiated by the node,
but could still be used for communications that already occurred during the preferred lifetime
period. If a communication is started by another node to an address which is deprecated, the
node will answer and use the deprecated address. This enables servers to continue serving
clients with its old address before the renumbering event is completely over. If the network
manager carefully adjusts the lifetimes during a renumbering event, it enables the smooth
handover without breaking the already opened connections.

Important to remember:

When an address is deprecated (preferred lifetime is zero, but valid lifetime is not
zero), already established connections remain and use the deprecated address, new
communications use the preferred addresses (preferred lifetime is not zero) and new
communications started by other nodes can still use the deprecated address.
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Let’s explain the lifetimes with a simple renumbering example. An organization uses
3ffe:b00:1::/48 prefix received from its current provider and is going to use 3ffe:b00:2::/48
prefix received from its new provider. To ensure a smooth handover, both providers will
be connected to the organization network for an overlap period of 2 days (t0–t2), so both
prefixes will be valid during that overlap period, as illustrated by Figure 5.4.

Two days before the start of the overlap period (at t = −2), the valid lifetime of the current
prefix (3ffe:b00:1::/48) is set to 4 days, because it is 2 +2 days before the current provider
link is shutdown (at t = +2). At the same time �t = −2�, the preferred lifetime of the current
prefix is set to 2 days, because at t = 0, the new provider link will be up and we want nodes
to switch over to the new provider. Those two lifetimes will be decreased over the two days
(t = −2 to t = 0). For example, 1 day before the new provider link is up �t = −1�, the valid
lifetime of the current prefix (3ffe:b00:1::/48) is 3 days and the preferred lifetime is 1 day,
as shown in Table 5.3.

When the new provider link is up, the new prefix (3ffe:b00:2::/48) is announced with
greater lifetimes (for example, valid lifetime = 2 weeks and preferred lifetime = 1 week)
since this provider link will be up for many months. The old prefix is now deprecated by
setting the preferred lifetime to zero: any new connections will now use the new prefix but
already started connections using the old prefix still work until the valid lifetime comes also
to zero, which happens when the old provider link is shutdown (at t = +2).

Old provider connected

New provider connected

–2 –1 0 +1 +2 +3 Time (days)

Preferred and valid
3ffe:b00:2::/48

3ffe:b00:1::/48
Preferred
and valid

Deprecated
but valid

Figure 5.4 Timeline of lifetime for typical renumbering

Table 5.3 Time line of lifetimes for typical renumbering

Lifetimes Time line −2 −1 0 1 2 3+
3ffe:b00:1::/48
Preferred lifetime 2 1 0 0 0 N/A
Valid lifetime 4 3 2 1 0 N/A
3ffe:b00:2::/48
Preferred lifetime N/A N/A 7 7 7 7
Valid lifetime N/A N/A 14 14 14 14
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These lifetimes are tied to the prefixes as part of the router advertisements. The network
manager has to change the lifetimes advertised by the routers. Since the hosts always listen
to the router advertisements, they will pick up the new lifetimes.

To implement this renumbering scheme as smoothly as possible, the routers have to
decrease linearly the lifetimes for each advertisement. If the previous advertisement was
5 minutes ago, then the lifetimes of the next advertisement should be 5 minutes less than
the previous lifetimes.

Lifetimes are represented in seconds in the specification [RFC2461] and most implemen-
tations also use seconds in their configuration files and commands.

During t = +2 and t = +3, the old prefix is still announced with lifetimes equal to
zero to make sure that nodes completely erase the old prefix in their configuration. This
is just a useful trick, it is not a protocol requirement. One can also decide to disable the
announcements of the old prefix as soon as the old provider link is shutdown.

Hint for clearing the old prefix when renumbering:

After a prefix become invalid, you should continue to announce it for a little while
with zero values for both preferred and valid lifetimes. This insures the nodes will
unconfigure immediately their old prefix.

5.4 Node Booting Process

Table 5.4 summarizes the autoconfiguration process, starting with the boot sequence of a
node. For simplicity, the node is assumed to have only one physical interface.

Table 5.4 Node Booting Process

Source Destination Description

1 Before booting, node is configured for autoconfiguration. Alternatively, its default configuration
does autoconfiguration, instead of static address configuration.

2 After kernel boots, a link-local address is created based on the MAC address of the interface. In
this example, the link-local address is fe80::212:6bff:fe3a:9e9a, based on the Ethernet address
00:12:6b:3a:9e:9a.

3 :: ff02::1:ff3a:9e9a Node verifies that this
link-local address is OK
to use on the local link
by doing a duplicate
address detection,
described in Section 6.3.
Destination address is the
solicited-node multicast
address (see Section 6.1)
of the tentative link-local
address of the node.

(continued overleaf )
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Table 5.4 (continued)

Source Destination Description

4 If another node responds by claiming the same link-local address, then the autoconfiguration
process stops and an error is sent to the user.

5 Link-local address of the node
(fe80::212:6bff:fe3a:9e9a).

ff02::2 Assuming no errors in
step 4, node sends a
router solicitation to all
routers on the link.

6 Link-local address of a router. Link-local address of the node
(fe80::212:6bff:fe3a:9e9a).

Router advertisement sent
by a router.

7 For each prefix in the router advertisement, concatenate the received prefix with the EUI-64 of
the MAC address and configure the interface with this additional address.

8 :: ff02::1:ff3a:9e9a For each interface, verify
the usability of the
address by doing
duplicate address
detection.

The minimal information needed for a node autoconfiguration is the address, prefix length,
default router and DNS server address. The router advertisements do not contain any DNS
server information. DNS server discovery is discussed in Section 8.4.

If no router advertisement is received, the node resends router solicitation messages a few
more times. If no router advertisement is received, then the node might try DHCP requests.
If DHCP is not available, then the node can only use its link-local address.

5.5 DHCPv6

The auto configuration mechanism creates an address where the network part is provided
by the router advertisements and the host part is created by the host, based on its link-layer
address. DHCP, instead, is a centralized way of handling node configuration where the
DHCP server gives all information, both the network and the host part, to the node. It is also
capable of sending additional information, such as DNS servers, time servers, printers, font
server, etc., not available in the router advertisements.

5.5.1 Basic Behavior

DHCP in IPv6 (DHCPv6) [RFC3315] does the same function as DHCP in IPv4. The
DHCP server sends IP addresses, DNS server addresses [RFC3646] and other possible data
to the DHCP client and the client configures itself accordingly. As opposed to stateless
autoconfiguration described in Section 5.2.2.1, DHCP gives to the network manager more
control over the configuration of the client and is more appropriate where tight central
network management is required.

The server also sends a lease time of the address and time to recontact the server to renew
the address. The client has then to resend a request to renew the address.
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DHCP servers do not have to be on the same link as their clients. A DHCP relay, usually
implemented in routers, listens to client requests on the link and forward all requests to the
known DHCP servers. If dynamic DNS is used, then the DHCP and DNS can be glued
together to register a DNS dynamic name for the DHCP client.

The DHCPv6 server sends IPv6 addresses to the DHCP client using IPv6 packets. Typi-
cally, it would also send the IPv6 addresses of the DNS servers. A DHCP server could also
send IPv6 addresses of printers, time servers, etc.

However, there are many differences with DHCP in IPv4, as summarized in Table 5.8.
The following sections describe the DHCPv6 process.

5.5.2 Initial Exchange

The process for a DHCPv6 booting client is illustrated in Figure 5.5, when the DHCP server
is on the link.

Table 5.5 describes the initial communications when the DHCP client is booting. The first
step for the client is to find routers by sending a router solicitation message to all routers on

DHCP
client

DHCP
server

Figure 5.5 DHCP Client and Server

Table 5.5 Booting DHCP client to a Server on the Same Link

From → To Type of packet Source and Destination
Addresses

Description and Content

1 Client → Routers ND RS Src: client link-local
Dst: all-routers on the
local link multicast:
FF02::2

A router solicitation is
sent at boot time to get
router advertisements.

2 Routers → Client ND RA Src : router link-local
Dst: client link-local

Routers send router
advertisements.

3 Client Process the received RA to find if the ‘Managed Configuration Flag’ is
set. If the flag is set or if no RA is received after multiple RS,
then continue with next step, otherwise do not use DHCP and try
autoconfiguration.

4 Client → Server DHCP Solicit Src: client link-local
Dst: all-DHCP-agents on
local link multicast:
FF02::1:2

Client tries to find DHCP
servers.

5 Server → Client DHCP Advertise Src: server link-local Server responds to client.
Dst: client link-local
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Figure 5.6 DHCP Client and Server with a Relay

the link. If one or more routers respond with a router advertisement, then the client parses
the message to see if the ‘Managed Configuration Flag’ is set. If it is set, as described
in Section 5.9.1, then the client can proceed by the DHCP Solicit message to find DHCP
servers. The DHCP server responds by a DHCP Advertise message.

If a DHCP relay is present and the server is on another link, as illustrated in Figure 5.6,
then the communications between the client and the server are forwarded by the relay.

The communications between the client and the server will be the same, except that the
relay will intercept the request and forward it by sending a DHCP relay-forward message
to the server which includes the original client message together with the relay address and
prefix length. By including the relay address, the server knows where the request came from
so it can reply with the appropriate and valid address for the client. These communications
are summarized in Table 5.6. The new messages showing the presence of the relay are
labeled 4.5 and 5.5 in the table.

This relay behavior is similar to the IPv4 case, although the IPv6 relay may forward the
request to the ‘All-DHCP-Servers on the site’ multicast address (FF05::1::3), if the relay
does not know the IPv6 addresses of the servers in the site. IPv6 DHCP relays do not need
the list of site DHCP servers if the multicast address is used.

The ‘Managed Configuration Flag’ in the router advertisements is a new concept in IPv6
where routers are now policing what nodes could do for their configuration. For managers,
it is a way to control the configuration of IPv6 nodes, by policy. None of this is possible in
IPv4.

5.5.3 Data Exchange

After the initial steps described in the preceding table, the client and the server exchange the
configuration data. This is done by the client sending the DHCP Request message asking
for data to the server and the server responding with the data in the DHCP Reply message.
Then the client confirms the data by sending a DHCP Confirm message to the server. This
is illustrated in Table 5.7. Note that the relay behavior is not shown, since it is illustrated in
Table 5.6.
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Table 5.6 Booting DHCP Client to a Server with a Relay

From → To Type of datagram Source and
Destination Addresses

Description and Content

1 Client → Routers ND RS Src: client link-local
Dst: all-routers on the
local link multicast:
FF02::2

A router solicitation is
sent at boot time to get
router advertisements.

2 Routers → Client ND RA Src: router link-local
Dst: client link-local

Routers send router
advertisements.

3 Client Process the RA to find if the ‘Managed Configuration Flag’ is set. If the
flag is set or there is no RA received after multiple RS, then continue
with next step, otherwise do not use DHCP and try autoconfiguration.

4 Client → Server DHCP Solicit Src: client link-local
Dst: all-DHCP-agents
on local link
multicast: FF02::1:2

Client tries to find
DHCP servers.

4.5 Relay → Server DHCP relay-forward Src: relay address
Dst: DHCP server or
all-DHCP-servers in
the site multicast
(FF05::1::3)

Relay forwards the
request by including it
in a relay-forward
message to the server.

5 Server → Relay DHCP relay-reply Src: server address
Dst: relay address

Server responds to the
client by sending the
response to the relay,
which will forward it to
the client.

5.5 Relay → Client DHCP Advertise Src: relay address
Dst: client link-local

Response from the
server sent by the relay.

Table 5.7 Data Exchange between the Client and the Server

From → To Type of datagram Source and Destination
Addresses

Description and
Content

6 Client → Server DHCP Request Src: Client link-local
Dst: Server address

Client requests data
to the server.

7 Server → Client DHCP Reply Src : Server address
Dst: Client Link-local

Server sends data to
the client.

8 Client → Server DHCP Confirm Src: Client link-local
Dst: Server address

Client confirms the
data to the server.

IPv6 prefixes received by the clients have lifetimes as in stateless autoconfigura-
tion. Lifetimes are bound to IPv6 addresses, but DHCP lease times are bound to the
renewal of all DHCP data. Lifetimes are used to help renumbering and are discussed in
Section 5.3.
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5.5.4 DHCPv6 Prefix Delegation

DHCPv6 configuration is extended to provide an IPv6 prefix [RFC3633] to the requesting
DHCPv6 client, which is in this case a router. This mechanism is known as DHCPv6 prefix
delegation (DHCPv6-PD). A typical scenario [RFC3769] is the home gateway which receives
a prefix for the home network by the service provider’s DHCP service. The prefix is then
advertised on the home links using router advertisements. The nodes on the home network
are using RA as described in Section 5.2.2.1, not DHCPv6.

5.5.5 Differences Between DHCPv4 and DHCPv6

With DHCPv4, a network manager has no easy way to signal new configuration data
immediately to the clients when a change has to be done: for example, when the IP address
of the DNS servers has to be changed. With DHCPv6, a Reconfig-init message can be sent
by the server to its clients. This will signal the clients to come back to the server immediately
for additional data. In the event of renumbering a network as well as for adding new services
or changing addresses of DNS servers, this feature in DHCPv6 is very useful.

DHCPv6 is a generalized version of the DHCP protocol, since it supports multiple servers
sending information to the same clients, and clients can receive multiple addresses for the
same interface, for example a unique-local and a global address. The DHCPv4 client-server
association based on an IP address cannot be used anymore for IPv6. To implement these
new features, the DHCPv6 protocol defines the concept of an identity association to bind all
requests and data together in this generalized context.

DHCPv6 is also used with one transition mechanism where the DHCPv6 server will
send temporary IPv4 addresses to IPv6 clients that need an IPv4 address for some connec-
tion. This mechanism, called Dual Stack Transition Mechanism (DSTM), is explained in
Section 17.1.3.

Table 5.8 summaries the key differences between DHCPv4 and DHCPv6. As one can see,
DHCPv6 is a definitive improvement over DHCPv4.

Table 5.8 Key differences between DHCPv4 and DHCPv6

Feature DHCPv4 DHCPv6 Benefit

Managed Configuration
Flag

Not available The router using router
advertisements flags
controls whether the nodes
can use DHCP or not.

Configuration of nodes
can be managed by a
network policy.

Destination address of
the initial request.

Broadcast Multicast to
All-DHCP-Agents

More specific signaling.
More efficient use of link.

Source address of the
initial request.

0.0.0.0 Link-local address of the
client

More specific signaling.
More efficient use of link.

Relay forwarding Needs a static
list of DHCP
servers on the
site

May use the
All-DHCP-Servers on the
site multicast address.

Easier to manage on
a large site. More
fault-tolerant and
redundant.
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Reconfiguration
message

Not available The server can ask the clients
to update their configuration
info.

Easier to trigger any
site-wide reconfiguration.

Identity Association Not available Clients can handle multiple
DHCP servers and receive
multiple addresses.

More scalable use of
DHCP.

DSTM Not
applicable

DHCPv6 used to give
temporary IPv4 addresses in
the DSTM transition
mechanism (see
Section 17.1.3).

Efficient use of remaining
IPv4 address space.

5.5.6 Dual Stack DHCP Clients

For nodes that have both IPv4 and IPv6 stacks configured as DHCP clients, the IPv4 and
IPv6 stacks send separate DHCP requests and receive separate DHCP answers from different
servers, using the respective IP protocol datagrams. It may happen that the two servers are
located on the same computer, running a combined software, for easy management, but the
requests will still be sent separately.

5.5.7 Renumbering with DHCP

With DHCP, preferred and valid lifetimes of prefixes are only sent in the DHCP exchanges.
However, there is no interaction of routers with hosts. In the event of renumbering, DHCP
clients are not informed as with the router advertisements. To inform the nodes about
renumbering, the network manager must:

1. Configure the DHCP servers with the new prefix data.
2. Send the Reconfig-init message to all its clients to signal the clients to go back to servers

for additional info.

The clients then automatically re-request the servers for updated data, get the new prefix and
configure themselves accordingly, which is changing their IPv6 addresses.

5.6 Node Addresses

A key difference in IPv6 is the fact that a node has many addresses defined. Table 5.9 shows
all addresses that a node may have, after successful configuration.

5.7 Configuring Interfaces and Router Advertisements on Hosts and
Routers

This section describes how to enable IPv6, and configure interfaces and router advertisements
on the various implementations. Skip the sections in which you are not interested.
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Table 5.9 Required node addresses

Quantity Address Requirement Context

One link-local must be defined on each interface
One loopback must be defined on each node
Zero to many unicasts may be defined on each interface
Any unique-local may be defined on each interface
One the all-nodes multicast must be joined on each interface
One the solicited-node multicast

(See Section 6.1)
must be joined for each unicast and anycast

addresses defined
Any multicast group may be joined on each interface

5.7.1 Network Example

Figure 5.7 shows the network used in the following configuration examples.

5.7.2 FreeBSD

The following sections describe enabling IPv6, configuring an interface and configuring
router advertisements for the FreeBSD 5.2 implementation.

Most configuration is done in the /etc/rc.conf file. The /etc/defaults/
rc.conf file provides all the default values for each variable and a basic documentation
on each variable that could be used in the /etc/rc.conf.

5.7.2.1 Enabling IPv6

In FreeBSD, IPv6 is enabled by setting the ipv6_enable variable to yes in the
/etc/rc.conf configuration file.

# cat /etc/rc.conf
ipv6_enable=yes

This configuration file is read at boot time by the boot scripts, namely /etc/rc and
/etc/rc.network6.

FF02::1

N1

RA: prefix =

3ffe:b00::1::/64

3ffe:b00:0:1::2

R2

Figure 5.7 Network example for interface and RA configurations
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5.7.2.2 Configuring an Interface

By default, all interfaces are autoconfigured if IPv6 is enabled as above. Autoconfiguration
is done by sending a router solicitation on each interface and configuring interfaces based
on received router advertisements.

The ifconfig command is used to configure manually an IPv6 address. The arguments
include ‘inet6’ for the address family, the IPv6 address and the prefix length. The example
below configures the fxp0 interface with the 3ffe:b00:0:1::a address and a /64
prefix length.

# ifconfig fxp0 inet6 3ffe:b00:0:1::a/64

The address configured by the ifconfig command is not saved for the next reboot. If the
static address needs to be permanently assigned, then the ipv6_ifconfig_fxp0 variable
is set to the address in the /etc/rc.conf file, as shown below.

# cat /etc/rc.conf
ipv6_ifconfig_fxp0=’’3ffe:b00:0:1::a/64’’

For the purpose of the FreeBSD examples throughout this book, fxp0 is shown where
an interface name is used.

5.7.2.3 Configuring Router Advertisements

When behaving as a router, FreeBSD is configured with IPv6 forwarding enabled (see
section 10.2.1) and to advertise prefixes on links by setting the rtadvd_enable variable
in /etc/rc.conf.

# cat /etc/rc.conf
rtadvd_enable=’’yes’’

By default, router advertisements are sent on all IPv6 enabled interfaces, with default
values. The advertised prefixes are taken from the routing table.

To restrict the advertisements to a specified set of interfaces, the rtadvd_interfaces
variable is set to the list of interfaces.

# cat /etc/rc.conf
rtadvd_interfaces=’’fxp0’’

This variable is particularly useful when the device is a gateway to some external network
(like the Internet or a direct provider) and router advertisements must be only sent to the
internal network.

Router advertisements are configured using the ‘/etc/rtadvd.conf’ file. This file
uses the termcap format where the index is the interface name. Variables and values are
separated by the # character. Since the termcap separator is ‘:’, any prefix or address must
be written within double quotes (“”). The following file enables router advertisements of
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the 3ffe:b00:0:1::/64 prefix on the fxp0 interface. The ‘addrs’ variable is set to
the number of prefixes, in example 1. The ‘addr’ variable contains the advertised prefix.
The ‘prefixlen’ variable contains the prefix length (64).

# cat /etc/rtadvd.conf
fxp0:addrs#1:addr="3ffe:b00:0:1::":prefixlen#64:

5.7.2.4 Troubleshooting

To verify the IPv6 addresses on an interface, use ifconfig <interface_name>.

% ifconfig fxp0

Pinging to self is a good way to see that basic IPv6 is working.

# ping6 ::1

IPv6 kernel variables starts with ‘net.inet6’ and can be managed with the sysctl
command.

# sysctl -a | grep inet6

The variables are set by the operating system scripts and modify the kernel behavior. The
net.inet6.ip6.accept_rtadv variable is the one to look at when troubleshooting,
as shown in Table 5.10.

Sometimes an interface is temporarily disconnected. When the interface is back, an imme-
diate router solicitation can be forced by the ‘rtsol’ command. The following example
triggers a router solicitation on the ‘fxp0’ interface.

# rtsol fxp0

5.7.3 Linux

The following sections describe enabling IPv6, configuring an interface and configuring
router advertisements for the Linux RedHat 8.0 implementation.

Table 5.10 Important FreeBSD IPv6 kernel variables

Variable Value Description

net.inet6.ip6.accept_rtadv 0 Do not accept/listen to router advertisements.
All interfaces must not be autoconfigured.
Interfaces should be configured statically or
by other means.

net.inet6.ip6.accept_rtadv 1 Accept router advertisements, to enable
autoconfiguration on interfaces. This is the
normal value for a host.
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5.7.3.1 Enabling IPv6

In Linux RedHat, IPv6 is enabled by setting the NETWORKING_IPV6 variable to yes in
the /etc/sysconfig/network configuration file.

# cat /etc/sysconfig/network
NETWORKING_IPV6=yes

The file is read by the scripts at boot time. However, at anytime, one can restart network
services, enabling IPv6 at the same time, with the ‘service’ command.

# /sbin/service network restart

5.7.3.2 Configuring an Interface

Linux is identical to FreeBSD for the ifconfig command used to configure manually an
address on an interface.

# ifconfig eth0 inet6 3ffe:b00:0:1::a/64

For the purpose of the Linux examples throughout this book, eth0 is shown where an
interface name is used.

5.7.3.3 Configuring Router Advertisements

When behaving as a router, Linux is configured with IPv6 forwarding enabled (see
Section 10.3.1). Redhat 8.0 distribution does not include the router advertisement daemon.
The radvd rpm (this book uses radvd-0.7.1-3.i386.rpm) must be installed for the Linux host
to do router advertisements.

The radvd daemon is configured by the /etc/radvd.conf file. The following
file enables router advertisements of the 3ffe:b00:0:1::/64 prefix on the eth0
interface.

# cat /etc/radvd.conf
interface eth0 {
advSendAdvert on;
prefix 3ffe:b00:0:1::/64 {
AdvOnLink on;

};
};

5.7.3.4 Troubleshooting

The first step is to verify if your kernel supports IPv6, by looking at the existence of the
/proc/net/if_inet6 file. If it exists, then the kernel supports IPv6.

# more /proc/net/if_inet6
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The IPv6 module should also be loaded. The lsmod command should show the IPv6
module.

# lsmod | grep ipv6

To verify the IPv6 addresses on an interface, use ifconfig <interface_name>.

% ifconfig eth0

Pinging to self is a good way to see that basic IPv6 is working.

% ping6 ::1

Router advertisements received on an interface can be viewed with the radvdump command.

# radvdump

5.7.4 Solaris

The following sections describe enabling IPv6, configuring an interface and configuring
router advertisements for the Solaris 9 implementation.

5.7.4.1 Enabling IPv6

In Solaris, IPv6 is enabled as soon as one interface is configured for IPv6.

5.7.4.2 Configuring an Interface

To enable IPv6 on an interface for autoconfiguration, a /etc/hostname6.
<interface_name> file is created with no content. The following enables IPv6 for
autoconfiguration on the le0 interface.

# touch /etc/hostname6.le0

The ifconfig command is used to configure manually an IPv6 address. The arguments
include ‘inet6’ for the address family, the IPv6 address and the prefix length. The exam-
ple below configures the le0 interface with the 3ffe:b00:0:1::a address and a /64 prefix
length.

# ifconfig le0 inet6 addif 3ffe:b00:0:1::a/64

The address configured by the ifconfig command is not saved for the next reboot. If
the static address needs to be permanently assigned, then the arguments of the ifconfig
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command are put in the corresponding /etc/hostname6.<interface_name>, as
shown below.

# cat /etc/hostname6.le0
addif 3ffe:b00:0:1::a/64

For the purpose of the Solaris examples throughout this book, le0 is shown where an
interface name is used.

5.7.4.3 Configuring Router Advertisements

Router advertisements are managed by the ndpd (neighbor discovery protocol daemon)
daemon, which is configured by the /etc/inet/ndpd.conf file. The file contains global
variables, variables per prefix and variables per interfaces. The following file enables router
advertisements of the 3ffe:b00:0:1::/64 prefix on the le0 interface.

# cat /etc/inet/ndpd.conf
ifdefault AdvSendAdvertisements on
prefix 3ffe:b00:0:1::/64 le0

5.7.4.4 Troubleshooting

To verify the IPv6 addresses on an interface, use ifconfig <interface_name>.

% ifconfig le0

Pinging to self is a good way to see that basic IPv6 is working. For IPv6, use the –A
inet6 to specify the IPv6 address family.

% ping —A inet6 ::1

5.7.5 Windows

The following sections describe enabling IPv6, configuring an interface and configuring
router advertisements for the Windows XP implementation.

5.7.5.1 Enabling IPv6

In Windows XP, IPv6 modules are loaded on the disk as part of the installation, but are not
enabled by default. To enable IPv6, the following command needs to be done once by an
administrator.

C> netsh interface ipv6 install

Enabling IPv6 is also possible by installing the ‘Microsoft TCP/IP version 6’ pro-
tocol for a LAN connection in ‘Network Connections’.



100 Migrating to IPv6

5.7.5.2 Configuring an Interface

The ‘add address’ subcommand is used to configure manually an address on an interface.
The example below configures the 3ffe:b00:0:1::a address on the ‘Local Area
Connection’ interface.

C> netsh interface ipv6 add address "Local Area Connection"
3ffe:b00:0:1::a

Different from most implementations, the prefix length is not specified with the address,
which forces a /64 as the prefix length.

For the purpose of the Windows examples throughout this book, ‘Local Area
Connection’ is shown where an interface name is used.

5.7.5.3 Configuring Router Advertisements

Windows can be configured as a router that forwards traffic between interfaces and advertise
prefixes on links. However, only static routes can be installed because no routing protocol
is available.

The ‘set interface’ subcommand is used to enable forwarding and router advertise-
ments on an interface. The example below configures, on the ‘Local Area Connection’
interface, the forwarding with the ‘forwarding=enable’ option and router advertise-
ments with the ‘advertise=enabled’ option.

C> netsh interface ipv6 set interface "Local Area Connection"
forwarding=enabled advertise=enabled

Enabling router advertisements on the interface is not enough to advertise pre-
fixes. The add route subcommand is used to specify the prefix to advertise with the
‘publish=yes’ option. In fact, only the routes specifically published and present in the
routing tables are advertised. The following example will generate router advertisements of
the 3ffe:b00:0:1::/64 on the ‘Local Area Connection’ interface.

C> netsh interface ipv6 add route 3ffe:b00:0:1::/64 "Local Area
Connection" publish=yes

By default, the prefixes are advertised with an infinite lifetime, which is not ideal for
most cases. The ‘validlifetime’ and ‘preferredlifetime’ options, expressed in
minutes, are used to set the valid and preferred lifetimes. The following example advertises
the 3ffe:b00:0:1::/64 prefix with a preferred lifetime of 1440 minutes (1 day) and a
valid lifetime of 10080 minutes (1 week).

C> netsh interface ipv6 add route 3ffe:b00:0:1::/64 "Local Area
Connection" publish=yes validlifetime=10080
preferredlifetime=1440
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5.7.5.4 Troubleshooting

The ‘netsh interface ipv6 show’ command is used for troubleshooting addresses
and interfaces.

The ‘show address’ subcommand displays the IPv6 addresses and the interface indexes
for all interfaces, as shown below.

C> netsh interface ipv6 show address

The ‘ipconfig’ command shows the IPv4 and IPv6 addresses, DNS configuration and
default router for all interfaces.

C> ipconfig

The ‘show interface’ subcommand displays the interface information, as shown
below.

C> netsh interface ipv6 show interface

The ‘level=verbose’ option displays additional information about the interfaces.

C> netsh interface ipv6 show interface level=verbose

The ‘ping’ command can be used to verify the reachability of another node. Ping accepts
both a hostname or an IP address as argument. If the hostname has both an IPv4 and an
IPv6 address in the DNS, then the IPv6 address is preferred.

C> ping 3ffe:b00:0:1::2

To force the use of IPv6, the ‘–6’ option can be used.

C> ping —6 www.example.org

In the service pack 2 of XP [Microsoft, 2005], a host firewall for IPv6 is enabled by
default. Some problems that you may experience with applications not connecting might be
related to some restrictions imposed by the firewall default rules. Use the netsh firewall
show command to see the status of the firewall.

C> netsh firewall show

5.7.6 Cisco

The following sections describe enabling IPv6, configuring an interface and configuring
router advertisements for the Cisco IOS 12.2(13)T implementation.



102 Migrating to IPv6

5.7.6.1 Enabling IPv6

In Cisco IOS, IPv6 is enabled as a host (non-routing) as soon as one interface is configured
for IPv6. This enables the Cisco device to act as a host. To enable IPv6 forwarding, the
ipv6 unicast-routing statement is used in the configuration mode.

configure terminal
ipv6 unicast-routing

5.7.6.2 Configuring an Interface

The ‘ipv6 address’ statement under the interface level is used to configure the address
of an interface. The following example configures the Ethernet0 interface with the
3ffe:b00:0:1::1 prefix and /64 as the prefix length.

configure terminal
interface Ethernet0
ipv6 address 3ffe:b00:0:1::1/64

IOS can also use the MAC address to make the host part of the address, by specifying the
‘eui-64’ argument to the ipv6 address statement.

configure terminal
interface Ethernet0
ipv6 address 3ffe:b00:0:1::/64 eui-64

Additional link-local addresses can be configured by adding the ‘link-local’ argument
and by specifying a link-local address. The following example adds the fe80::1/64
link-local address on the Ethernet0 interface.

configure terminal
interface Ethernet0
ipv6 address fe80::1/64 link-local

Since IPv6 supports multiple addresses on the same interface, IOS does not need the
‘secondary’ argument used in IPv4 addresses.

As in IPv4, the address of an interface can be set to the one on another interface, using
the ‘ipv6 unnumbered’ statement. The following example configures the address of the
Ethernet0 based on the Loopback interface address.

configure terminal
interface Loopback0
ipv6 address 3ffe:b00:0:1::1/64

interface Ethernet0
ipv6 unnumbered Loopback 0

For the purpose of the Cisco examples throughout this book, Ethernet0 is shown where
an interface name is used.
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5.7.6.3 Configuring Router Advertisements

Router advertisements in IOS are set per interface using the ipv6 nd prefix-
advertisement statement.

configure terminal
interface Ethernet0
ipv6 nd prefix-advertisement 3ffe:b00:0:1::/64

Note that by default, the prefix is advertised on-link.
The prefix advertisement can be further specified with the following options on the ipv6

nd prefix-advertisement statement:

• The valid lifetime of the prefix, in seconds, is set as the first argument after the prefix.
The default is 2592000 seconds (30 days).

• The preferred lifetime of the prefix is set as the second argument after the prefix. The
default is 604800 seconds (7 days).

5.7.6.4 Troubleshooting

To verify the IPv6 addresses on an interface, use the show ipv6 interface
<interface_name> command.

enable
show ipv6 interface ethernet0

Pinging to self is a good way to see that basic IPv6 is working.

> ping ipv6 ::1

To show a summary of the IPv6 traffic, use the ‘show ipv6 traffic’ command.

enable
show ipv6 traffic

To debug IPv6 packets, use the ‘debug ipv6 packet’ command.

enable
debug ipv6 packet

To debug IPv6 neighbor discovery packets and processing, use the ‘debug ipv6 nd’
command.

enable
debug ipv6 nd
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5.7.7 Hexago

The following sections describe enabling IPv6, configuring an interface and configuring
router advertisements for the Hexago HexOS implementation.

5.7.7.1 Enabling IPv6

In HexOS, IPv6 is enabled as soon as one interface is configured for IPv6. IPv6 forwarding
is also enabled by default.

5.7.7.2 Configuring an Interface

The ‘ipv6 address’ statement under the interface level is used to configure the address
of an interface. The following example configures the fastethernet0 interface with the
3ffe:b00:0:1::1 prefix and /64 as the prefix length.

configure terminal
interface fastethernet0
ipv6 address 3ffe:b00:0:1::1/64

For the purpose of the HexOS examples throughout this book, fastethernet0 is
shown where an interface name is used.

5.7.7.3 Configuring Router Advertisements

Router advertisements in HexOS are set per interface using the ipv6 nd prefix statement.

configure terminal
interface fastethernet0
ipv6 nd prefix 3ffe:b00:0:1::/64

By default, the preferred lifetime is 604800 seconds (7 days), the valid lifetime is 2592000
seconds (30 days), and the onlink and autoconfig flags are set. These default values can be
changed as options to the ipv6 nd prefix statement.

5.7.7.4 Troubleshooting

To verify the IPv6 addresses on an interface, use the show ipv6 interface
<interface_name> command.

enable
show ipv6 interface FastEthernet0

Pinging to self is a good way to see that basic IPv6 is working.

> ping ipv6 ::1
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To debug IPv6 packets, use the ‘debug ipv6 packet’ command.

enable
debug ipv6 packet

5.7.8 Juniper

The following sections describe enabling IPv6, configuring an interface and configuring
router advertisements for the Juniper JunOS 5.5 implementation.

5.7.8.1 Enabling IPv6

In JunOS, IPv6 is enabled as soon as one interface is configured for IPv6.

5.7.8.2 Configuring an Interface

JunOS presents a hierarchical view of the configuration statements. At the ‘unit’ sub-level
of ‘interfaces’, an interface is configured for IPv6 by using ‘family inet6’ instead
of using ‘family inet’ for IPv4.

The following example configures the Fast Ethernet interface with a static and fully
qualified IPv6 address of 3ffe:b00:0:1::2 and a /64 prefix length on the link.

interfaces fe-0/0/1 {
unit 0 {
family inet6 {

address 3ffe:b00:0:1::1/64;
}

}
}

To configure the host part with the interface identifier based on EUI-64, the address
object is specified only by the first 64 bits of the address (3ffe:b00:0:1::/64) and the
‘eui-64’ attribute is added in the address sub-level, as shown below.

interfaces fe-0/0/1 {
unit 0 {
family inet6 {
address 3ffe:b00:0:1::/64 {
eui-64;

}
}

}
}

For the purpose of the Juniper examples throughout this book, fe-0/0/1 unit 0 is
shown where an interface name is used.
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5.7.8.3 Configuring Router Advertisements

To configure RAs on JunOS, the ‘router-advertisement’ hierarchy is used. For each
interface enabled for RA with the interface statement, the prefix sub-statement is used to
specify the prefixes to be announced on the link of the interface.

5.7.8.4 Basic RA Configuration

The following statement configures the router advertisement of the 3ffe:b00:0:1::/64 prefix
on the LAN1 link.

protocols {
router-advertisement {
interface fe-0/0/1 {
prefix 3ffe:b00:0:1::/64;

}
}

}

By default, the prefix is advertised on-link.
The prefix advertisement can be further specified with the following options:

• The preferred lifetime of the prefix is set with the ‘preferred-lifetime’ statement.
The default is 604800 seconds (7 days).

• The valid lifetime of the prefix is set with the ‘valid-lifetime’ statement. The default
is 2592000 seconds (30 days).

5.7.8.5 Options

At the ‘interface’ sub-level, the following options can be added (this list is not exhaustive
and represents the typical options most networks will use; please refer to the manufacturer
manuals):

• The hop limit to be configured by the nodes is set with the ‘current-hop-limit’
statement. The default is 64.

• The default router lifetime is set with the ‘default-lifetime’ statement. The default
is three times the advertisement interval.

• The stateful autoconfiguration flags are set with the ‘managed-configuration’
and ‘other-stateful-configuration’ statements. The default is no stateful
autoconfiguration.

The statements below show the same router advertisement with all the above options
set: a 3ffe:b00:0:1::/64 is advertised on the fe-0/0/1 interface, with a preferred lifetime of
3 days (259200 seconds), a valid lifetime of 7 days (604800 seconds), a hop limit of 128,
a default router lifetime of 10 minutes (600 seconds) and the stateful autoconfiguration
flags set.
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protocols {
router-advertisement {

interface fe-0/0/1 {
prefix 3ffe:b00:0:1::/64 {

preferred-lifetime 259200;
valid-lifetime 604800;

}
current-hop-limit 128;
default-lifetime 600;
managed-configuration;
other-stateful-configuration;

}
}

}

5.7.8.6 Troubleshooting

To clear all the router advertisements, use the following command.

clear ipv6 router-advertisement

To show the router advertisements, use the following command.

show ipv6 router-advertisement

The ‘conflicts’ option of this command is very useful to find out if other routers are
sending different and conflicting router advertisements on the link, when nodes seem to have
some instability in their configuration.

5.7.9 Debugging Autoconfiguration and Router Advertisements

The default periodicity of the router advertisements is between 200 and 600 seconds. The
preferred and valid lifetime should be greater than the router advertisement periodicity, by
a few times. If the node do not get one or two advertisements (because of a busy link, etc.),
it does not unconfigure its address. Always make sure that lifetimes are greater than 30
minutes �3×600 seconds�.

Some router advertisement implementations define the valid and preferred lifetimes as
infinite by default. If any mobile device, like a laptop, is receiving the infinite lifetime, it
will theoretically keep the address until a new reboot, even if it moves to a new network.
This keeps an invalid address in the kernel that might cause timeouts. A good practice is to
define the preferred and valid lifetime as non-infinite. Any value should be based on some
assumptions about the router advertisement ‘service’, but valid and preferred lifetimes of
hours or days are good practice.

5.8 Summary

Addresses of IPv6 nodes can be configured statically, with autoconfiguration or with
DHCP. For nodes to use autoconfiguration, a router solicitation message is sent at boot
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time to all routers on the link. Routers on the link respond with router advertisements
which include one or many prefixes of the link, the default router, and some additional
information.

DHCP enables autoconfiguration of the address as well as any options such as DNS server,
printers, etc.

Renumbering of a site is easier in IPv6 using either DHCP or address autoconfiguration.

5.9 Appendix

This appendix lists each parameter and options of the protocol messages described in this
chapter.

5.9.1 Router Advertisement and Solicitation Message Formats

Table 5.11 lists all fields in the router advertisement packet.
The router advertisement includes information about the prefix, listed in Table 5.12.

Table 5.11 Router Advertisement Packet

IP Header
Fields

Length (bits) Value Description

Source address 128 Link-local
address of the
router

Link-local address of the router interface
sending the router advertisement.

Destination
address

128 FF02::1 All-nodes on the link multicast address.

Hop limit 8 255 See Section 7.3 on the use of 255.

ICMP Header
Fields

Length (bits) Value Description

Type 8 134 134 is the ICMP type for a neighbor
discovery router advertisement message.

Code 8 0

Router
Advertisement
Fields

Length (bits) Value Description

Managed
address
configuration
flag

1 Set if DHCP is allowed to be used on
the link.

Other stateful
configuration
flag

1 Set if other information such as DNS
servers can be obtained from the DHCP
server.

Router lifetime 16 If non-zero, identifies the router as a
default router for the specified period.
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Reachable time 32 Timer to be used by nodes to determine the
reachability of another node on the link,
discussed in Section 6.4.

Retransmission time 32 Delay, in seconds, between neighbor
solicitation requests, discussed in Section 6.2.

Prefix See Table 5.12 Prefix to be used by the node to
autoconfigure.

Link-layer address of
the source (router)

128 The link-layer address of the source router.

MTU 32 The MTU of the link.

Table 5.12 Prefix fields in router advertisements

Name Length (bits) Value Description

Type 8 3 Identifies the type of option; prefix
information in this case.

Length 8 4 Total length of the option fields.
Prefix length 8 0–128, usually 64 Length of the prefix below, indicating the

number of useful bits in the prefix for
node autoconfiguration.

L 1 0,1, usually 1 Set when the prefix is used on the link.
Usually set.

A 1 0,1, usually 1. Set to signal the node to use the prefix
for autoconfiguration. Usually set.

Valid lifetime 32 Duration in seconds of the prefix
validity. Value of 0xffffffff defines
infinity.

Preferred lifetime 32 Duration in seconds of the preferred
status of the address, which means the
client can use this address as a source
address when preferred is different to
zero.

Prefix 128 Prefix available to the node for address
autoconfiguration.

5.9.2 DHCP Variables, Addresses and Ports

DHCP has a number of variables and fields. Table 5.13 lists the port numbers used by the
DHCP protocol.

Table 5.14 lists all the protocol addresses for DHCP.
Table 5.15 lists the DHCP message types used between clients, relays and servers.
DHCPv6 uses a concept of identity association to manage the identity of a client, because

the uniqueness of an address is no more available as an identifier of the client. Table 5.16
shows the fields of the identity association option.
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Table 5.13 DHCP port numbers

Name Number Transport Description

dhcpv6-client 546 UDP Destination port used by servers and relays for messages
sent to clients.

dhcpv6-server 547 UDP Destination port used by clients for messages sent to
agents.

Table 5.14 DHCP addresses

Name Address Description

All DHCP Agents FF02::1:2 Destination address used by clients to find the agents on the
link.

All DHCP Servers FF05::1:3 Destination address used by clients (or relays) to find the servers
on the site.

Table 5.15 DHCP message types

Name Value From To Description

SOLICIT 1 client all agents Sent by clients to find servers.
ADVERTISE 2 servers client Sent by servers to show their presence.
REQUEST 3 client server Sent by the client asking for configuration

information.
CONFIRM 4 client server Sent by the client to confirm the received

configuration information.
RENEW 5 client server Sent by the client to renew the previously

received configuration information.
REBIND 6 client servers Sent by the client requesting any server to

renew the previously received configuration
information.

REPLY 7 servers client Sent by the server containing the configuration
information for the client.

RELEASE 8 client server Sent by the client to release the configuration
information to the server. Happens when the
client is about to shutdown and does not need
the address anymore.

DECLINE 9 client server Sent by the client to tell the server that the
received configuration information is not usable.

RECONFIG-INIT 10 server client Sent by the server to tell the client that
configuration information has been updated
and client should re-request configuration
information.

RELAY-FORW 11 relay server Sent by relays to forward client messages to
server.

RELAY-REPL 12 server relay Sent by servers to send replies to client through
relays.
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Table 5.16 Identity association fields

Name Length (bits) Value Description

OPTION IA 16 1 Identifier of this option.
option-len 16 Length of this message.
IAID 32 Unique identifier of this identity association,

defined by the client.
T1 32 Time to re-contact the server to renew the address.
T2 32 Time to re-contact any server to renew the address.
IA status 8 Status of the identity association.
num addrs 8 Number of addresses included.
For each included address
T 1 Set to 1 to indicate a temporary/privacy address

(see Section 13.4)
addr status 7 Status of the address.
prefix length 8 Length of the prefix.
IPv6 address 128 IPv6 address sent by the server to the client.
preferred
lifetime

32 Preferred lifetime of the address.

valid
lifetime

32 Valid lifetime of the address.
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6
Link-layer Integration

IPv6 packets are encapsulated in layer 2 frames. Interaction with layer 2, such as IPv6
address to MAC address mapping, is key to any communication. IPv6 brings more efficiency
than IPv4 in this interaction with layer 2. This chapter uses Ethernet as the layer 2 example.

Solicited-node multicast address is first described. This special form of address enables
efficient discovery of a neighbor’s layer 2 address. Similar to IPv4 Address Resolution
Protocol (ARP), neighbor solicitation and advertisement is then described. Duplicate address
detection is shown based on neighbor solicitation. IPv6 over Ethernet is presented with the
specifics of frame identifier and multicast mapping. The chapter ends with some configuration
examples of major implementations.

6.1 Solicited-Node Multicast Address

IPv6 uses multicast instead of broadcast for network efficiency purposes, such as with the
Neighbor Discovery (ND) protocol. In IPv4 ARP, a node has to broadcast to everyone on
the link to query the MAC address corresponding to a known IP address. Since ARP is
the mechanism used before the real IP exchange happens, there is no easy way to avoid
broadcasts in IPv4. IPv6 is well designed to make the discovery of the MAC addresses a
near to unicast query!

Neighbor discovery uses a special form of a multicast address, called the solicited-node
multicast address. This address contains part of the targeted IPv6 address of the neighbor. The
format is based on a fixed leftmost prefix of 104 bits defined as: ff02:0:0:0:0:1:ff00::/104.
The rightmost 24 bits are taken from the rightmost 24 bits of the target IPv6 address.
Figure 6.1 describes the structure.

Figure 6.2 shows the construction of the solicited-node multicast address from the
3ffe:b00:0:1:212:6bff:fe3a:9e9a address.

Table 6.1 gives some examples of IPv6 addresses and their corresponding solicited-node
multicast address.

Migrating to IPv6: A Practical Guide to Implementing IPv6 in Mobile and Fixed Networks Marc Blanchet
© 2006 John Wiley & Sons, Ltd
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FF 0 2 0:0:0:0:1

104 24

FF Lower 24 bits
from address

Figure 6.1 Solicited-node multicast structure

FF 0 2 0:0:0:0:1

104 24

FF 3a 9e9a

fe6bff21210b003ffe 3a 9e9a

Figure 6.2 Solicited-node multicast address example

Table 6.1 Examples of Solicited-node Multicast Addresses

IPv6 address Corresponding Solicited-node Multicast Address

3ffe:b00:0:1::1 ff02::1:ff00:1
3ffe:b00:0:1:212:6bff:fe3a:9e9a ff02::1:ff3a:9e9a
fe80::212:6bff:fe54:f99a ff02::1:ff54:f99a
fc00:0:0:1::aaaa:a1 ff02::1:ffaa:a1

If a node is configured with 3ffe:b00:0:1::1, then it must listen to the corresponding
solicited-node multicast address: ff02::1:ff00:1. For all of its IPv6 addresses, a node lis-
tens to all the corresponding solicited-node multicast addresses on the respective interfaces.
For example, if a node has three addresses (3ffe:b00:0:1::1, 3ffe:b00:0:1:212:6bff:fe54:f99a,
fe80::212:6bff:fe54:f99a) assigned to an interface, then the node must listen to the cor-
responding solicited-node multicast addresses (ff02::1:ff00:1, ff02::1:ff54:f99a). Note that
there are only two multicast addresses for three unicast addresses: because the last two
unicast addresses share the rightmost 24 bits, the same multicast address is used. This is
often the case since the same interface identifier is used by the autoconfiguration mechanism
for many addresses on the same interface.

Important point:

A node listens to all solicited-node multicast addresses corresponding to all of its unicast
and anycast addresses.
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Solicited-node multicast addresses are used by the neighbor solicitation process, described
in Section 6.2.

6.2 Neighbor Solicitation and Advertisement

The Neighbor Discovery (ND) protocol is used for different purposes. Router solicitation
and advertisements are used by the routers to send network information to hosts, as described
in Section 5.2.2. Neighbor solicitation and advertisements are also part of the neighbor
discovery protocol.

Neighbor solicitation is the mechanism for a node to request the link-layer address of a
target node known by its IPv6 address, to enable communications between the two parties
on the same link. The target node responds with a neighbor advertisement. The ARP is the
corresponding protocol in IPv4.

6.2.1 IPv4 Address Resolution Protocol

When an IPv4 node wants to send a datagram to another IPv4 node, the source node uses
ARP to find the link-layer address of the target node. The ARP request is sent by the source
node to all nodes on the local link, using the link-layer broadcast address. The request
contains the IP address of the target. All nodes look at the request and only the one that has
the target IP address responds to the source node with an ARP reply containing the target
link-layer address. Table 6.2 shows the process for Ethernet links.

6.2.2 IPv6 Differences

IPv6 does the same process but optimizes it using multicast and uses a different transport
mechanism.

Section 6.1 describes how any node listens to the solicited-node multicast address for each
of its IPv6 addresses. The solicited-node multicast addresses contain the last 24 bits of its
IPv6 addresses. When an IPv6 node does the equivalent of the IPv4 ARP request, it sends

Table 6.2 IPv4 ARP request on Ethernet

From → To Type of
packet

Source and Destination
Addresses

Description and Content

1Src host (A) → All
hosts

ARP
request

Ethernet Src: MAC
address of A
Ethernet Dst: link
broadcast
Ethernet Type: ARP

MAC address of source (A)
IP address of source (A) and target (B)
Opcode = Request

2Target host (B) →
Src host (A)

ARP
reply

Ethernet Src: MAC
address of B
Ethernet Dst: MAC
address of A

MAC address of target (B) and source
(A)
IP address of source (A) and target (B)
Opcode = Reply
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the datagram to the solicited-node multicast address of the target. This means that only the
nodes that have the same rightmost 24 bits in their IPv6 address listen to that request. Recall
that in IPv4, the ARP request is broadcast. But as in IPv4, only the one IPv6 node concerned
with the request (by looking at the target IP address in the request) answers.

From the layer 2 perspective, IPv4 ARP is a layer 3 protocol just as IP, so ARP must be
redefined for each layer 2 technology. Instead, the IPv6 ND protocol uses ICMP as transport.
So neighbor solicitation and neighbor advertisements messages are specific ICMP messages
and are completely independent of the layer 2.

6.2.3 Neighbor Solicitation Process

When a node wants to send a datagram to a neighbor on the same link, it sends a neighbor
solicitation message to the solicited-node multicast address corresponding to the IPv6 address
of the neighbor. All nodes listening to that solicited-node multicast address look at the
request but only the real target answers, since the request message contains the full IPv6
address of the target.

Table 6.3 shows the process. The neighbor solicitation message sent by source A is an
ICMP message of type 135. The IPv6 source address is the link-local address of source A.
The destination address is the solicited-node multicast address of target B.

A neighbor advertisement is sent as a response to a neighbor solicitation. Node A sends a
neighbor solicitation to the solicited-node multicast address of the IPv6 address of node B.
Node B responds with a neighbor advertisement sent directly to node A and includes node
B’s layer 2 address. The neighbor advertisement contains the link layer address of B.

The delay before resending a neighbor solicitation when no neighbor advertisement
is received can be configured. As part of the router advertisements, routers can specify

Table 6.3 Neighbor solicitation and advertisement

From → To Type of
packet

Source and Destination Addresses Description and Content

1 Src host (A) →
All hosts who
have the same
rightmost 24 bits
of the targeted
IPv6 address

ICMPv6
Type=135
(ND NS)

Link Src: link-layer address of
source (A)
Link Dst: link-layer multicast
address of the solicited-node
multicast address of target (B)
IP Src: link-local address of
source (A)
IP Dst: solicited-node multicast
address of B address

Neighbor solicitation:
constains the IPv6
address of B.

2 Target host (B)
→ Src host (A)

ICMPv6
Type=136
(ND NA)

Link Src: link-layer address of
target (B)
Link Dst: link-layer address of
source (A)
IP Src: link-local address of
target (B)
IP Dst: link-local address of
source (A)

Neighbor advertisement:
contains the link-layer
address of B.
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this delay, called ‘retransmission time’, to nodes. The retransmission time is described in
Table 5.11.

6.3 Duplicate Address Detection

A new mechanism is defined in IPv6 to verify the usability of every address a node intends
to use. This is to ensure that nobody else on the link has the same address, which would lead
to unexpected behavior on the link. In IPv4, many recent implementations carry out an ARP
query to their own address to verify if someone is using that address. This process is not
mandatory in IPv4. However, in IPv6, this process, called duplicate address detection (DAD),
is mandatory and implemented using a more efficient technique by using the solicited-node
multicast address.

A node starts using a new address after receiving a router advertisement or at boot time
when trying to use its link-local address or when the address is manually configured. Every
time a new address is going to be used, the duplicate address detection takes place.

If node A wants to use its link-local address fe80::212:6bff:fe54:f99a, it checks if this
address is already in use on the link by sending a neighbor solicitation to the solicited-
node multicast address (ff02::1:ff54:f99a) corresponding to its to-be-used address. If a node
respond by a neighbor advertisement, then this address cannot be used. This process is
detailed in Table 6.4.

If a node responds to the neighbor solicitation with a neighbor advertisement, then a dupli-
cate address is detected, the new address is not used and an error is generated to the user.

Since the default prefix length is /64 for a link and hosts are autoconfigured using their
unique MAC address, duplicate addresses should not occur very often.

6.4 Neighbor Cache

As in IPv4, a node maintains a list of his neighbors. Each destination address on the local link
appears in the neighbor cache. The possible states of a cache entry are listed in Table 6.5.

In normal operations, most of the entries in the neighbor cache will show the ‘stale’ status.
The nodes that were recently contacted will have the ‘reachable’ status. A node that is kept
in incomplete state means there is a problem reaching it.

Table 6.4 Duplicate address detection

From → To Type of
packet

Source and Destination Addresses Description and Content

1 Src host (A) →
All hosts who
have the same
rightmost 24 bits
of the targeted
IPv6 address (A)

ICMPv6
Type=135
(ND NS)

Link Src: link-layer address of
source (A)
Link Dst: link-layer multicast
address of the solicited-node
multicast address of target (A)
IP Src: link-local address of
source (A)
IP Dst: Solicited-node multicast
address of A address

Neighbor solicitation:
contains the IPv6
address of A.
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Table 6.5 States of the neighbor cache

State Description

incomplete The node has sent a neighbor solicitation to this neighbor but has not yet received a
neighbor advertisement.

reachable Neighbor advertisement was received ‘recently’: the expiration time for this entry has
not been reached yet.

stale Neighbor advertisement was received for this entry but the expiration time has arrived.
Any packet that needs to be sent to this neighbor should restart the neighbor
solicitation process. This state is the most common state because the expiration time of
the reachable state is very short.

delay Like the stale state, but is an intermediate step towards resending a neighbor
solicitation through the probe state. This state is an optimization for upper-layer
protocols such as TCP.

probe Neighbor solicitation is being sent to this node, after being in the delay state.

The expiration time from the reachable to the stale state is called the ‘reachable time’. It
can be specified in router advertisements, so routers can force the nodes to use this value.
Reachable time is described in Table 5.11.

6.4.1 Neighbor Unreachability Detection

Neighbor Unreachability Detection (NUD)[RFC2461] is a process where nodes are active
in keeping the reachability state of their neighbors. This is very useful for nodes that have
multiple default routers and when one of them becomes unavailable. By active detection, the
node can switch to other default routers. The process is to send unicast neighbor solicitations
messages to the neighbors when the node has to send traffic to the neighbor and to keep the
states in the neighbor cache.

6.5 EUI-64 and Neighbor Discovery

When sending a packet from a node A to another node B and given that the host part of an
address embeds the MAC address, a node (A) might just extract the MAC address from the
IPv6 address of the destination (B) and then use the MAC address as the destination layer
2 frame address. This would avoid the need for the neighbor solicitation and advertisement
process, the duplicate address detection and it would be faster. However, for the following
reasons this is not the case:

• The fact that a node has an address that looks like an EUI-64 does not necessarily mean
that the MAC address is there.

• Some link-layers do not have unique MAC addresses.
• There is not necessarily a one-to-one relationship between the MAC address and the IPv6

address.
• Nodes are also using manually assigned addresses or temporary addresses, which have no

EUI-64 host part. These addresses must use neighbor discovery.
• It is safer to implement this mechanism for all addresses to avoid duplicate addresses on

the same link.
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• The cost of an initial neighbor solicitation/advertisement exchange is low compared to the
safety guard it provides.

• If multiple addresses on the same interface use the EUI-64 from the same MAC addresses,
implementations can choose to make the neighbor solicitation only on the first one and
skip for the others, increasing the efficiency of the neighbor solicitation and advertisement
process.

For all these reasons, neighbor solicitation is always used even when the target address is
EUI-64 formatted.

6.6 IPv6 over Ethernet

IPv6 is defined to work over most of the link-layer technologies, such as, but not limited to:

• Ethernet [RFC2464]
• PPP [RFC2472]
• FDDI [RFC2467]
• Token-Ring [RFC2470]
• Non-Broadcast Multiple Access (NBMA) [RFC2491]
• ATM [RFC2492]
• Frame-Relay [RFC2590]
• IEEE 1394 (Firewire) [RFC3146]
• ARCNET [RFC2497]
• MAPOS (Multiple Access Protocol Over SONET/SDH) [RFC3572]

However, for simplicity, this chapter presents IPv6 over Ethernet and PPP, the most com-
monly used link-layer technologies.

When a node is autoconfigured using the interface identifier, this identifier is based on the
MAC Ethernet address of the interface, following the EUI-64 specification [IEEEEU164]
described in Section 5.2.1.

In this section, Ethernet addresses are represented as six fields written as octets in hex-
adecimal with a ‘-’ as field separator (e.g. 00-11-22-33-44-55).

6.6.1 Frame Identifier

Ethernet has a protocol field in the frame format to identify the type of protocol in the frame
payload. IPv4 datagrams are identified with 0x0800 in the Ethernet protocol field. IPv4 ARP
and RARP are identified with 0x0806 and 0x8035 respectively.

IPv6 datagrams are identified with 0x86DD in the Ethernet protocol field, as shown in
Figure 6.3.

6.6.2 Multicast

IP Multicast is a way to send one datagram to many selected nodes at the same time.
To remain efficient, this mechanism is also implemented on the link layer. If not, then IP
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Figure 6.3 Ethernet frame ID for IPv6

multicast traffic is typically broadcasted which defeats the purpose of multicast on local
links.

On Ethernet, multicast traffic is identified by the value of 1 in the 8th most significant bit
of the Ethernet address, as shown in Figure 6.4. In other words, if the second hex digit of
the Ethernet destination address is odd, then it is a multicast Ethernet frame.

Hint for identifying Ethernet multicast traffic:

If the second hex digit of an Ethernet destination address is odd, then the frame contains
multicast traffic.

An Ethernet multicast address range is defined for the mapping between an IP multicast
address and the corresponding Ethernet multicast address.

IPv4 multicast addresses are defined with 1110 as the leftmost four bits, which leaves
28 bits for the multicast group. The multicast range is 224.0.0.0 to 239.255.255.255. The
corresponding Ethernet reserved address range for IPv4 multicast is 01-00-5E-xx-xx-xx. The
rightmost 23 bits of an IPv4 multicast address are extracted and put as the rightmost 23 bits
in the Ethernet multicast address, as shown in Figure 6.5.

For example, the Ethernet address corresponding to 224.0.0.1 is 01-00-5E-00-00-01.
IPv6 multicast addresses are defined with ‘ff’ as the first octet. The second octet has fields

for scope and permanency, which leaves 112 bits (128 – 8 – 8) for the multicast group.
The Ethernet reserved address range for IPv6 multicast is 33-33-xx-xx-xx-xx. The rightmost
32 bits of an IPv6 multicast address are extracted and put as the rightmost 32 bits in the
Ethernet multicast address, as shown in Figure 6.6.

For example, the Ethernet multicast address corresponding to ff02::1:ff54:f99a is 33-33-
ff-54-f9-9a.

Link-layer devices such as interface cards in nodes and switches carry out filtering of
multicast frames in order to process only the relevant multicast traffic. They compare

xxxxxxx1 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

48 bits

Figure 6.4 Multicast bit in an Ethernet address
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Figure 6.5 IPv4 to Ethernet multicast address mapping
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Figure 6.6 IPv6 to Ethernet multicast address mapping

the destination address of a multicast frame with their own list of registered multicast
groups.

A multicast-aware switch usually snoops the Internet Group Management Protocol (IGMP)
messages to identify which hosts join which group. This enables the switch to forward care-
fully the multicast datagrams to only the relevant hosts. If a switch is not aware of multicast,
then it has to send the datagram on all its ports. Some issues have been discovered and
documented [Christensen et al., 2004] with bad switch implementation of IGMP snooping.
Experience has shown that switches are not a problem for IPv6 traffic.

6.6.3 Ethernet MTU

The Maximum Transmission Unit (MTU) of Ethernet is 1500. Larger MTU, such as 9 K are
possible on gigabit Ethernet. Interfaces are usually configured with the right MTU of the
link. A specific link MTU can be advertised to the nodes, as discussed in Section 6.9.
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6.7 Point-to-Point Links

Point-to-point links use the Point-to-Point Protocol (PPP) [RFC1661] suite to negotiate
the link-layer encapsulation, the control, the authentication and the layer 3 protocols using
the link. Each function is accomplished using a specific PPP sub-protocol, which uses
a specific PPP packet identified by the protocol id field in the PPP frame, as shown in
Figure 6.7.

A PPP frame starts with a Protocol id field, identifying the type of payload. Padding is
added after the payload if necessary.

There are three classes of PPP protocols:

• The Link-Control Protocol (LCP) which establishes the link, controls the basic link features
and maintains the link state.

• Corollary protocols like authentication and compression protocols, for example, the Pass-
word Authentication Protocol (PAP) and the Challenge-Handshake Authentication Protocol
(CHAP).

• Layer 3 control protocols, named Network Control Protocols (NCP), deal with the specifics
of the layer 3 protocols. For example:

– the IP Control Protocol (IPCP) manages the IPv4 behavior on the PPP link. As an
example, IPCP is used to negotiate the IPv4 address of the incoming PPP node.

– the Appletalk Control Protocol (ATCP) manages the Appletalk behavior on the PPP
link.

– the IPv6 Control Protocol (IPv6CP) manages the IPv6 behavior on the PPP link.

Table 6.6 lists some PPP protocols with their id and description. IPv4 is handled by the
IPCP control protocol and IPv4 packets are put in the payload of PPP frames with the
protocol id 0x0021.

IPv6 is handled by the IPv6CP control protocol [RFC2472] and IPv6 packets are put in
the payload of PPP frames with the PPP protocol id 0x0057, as illustrated in Figure 6.8.

Multiple layer 3 protocols can be transported over the same PPP link since they have
a specific control protocol and a specific PPP protocol identification to differentiate the
packets. However, both ends of the PPP link have to support and agree on the layer 3
protocols.

Important point:

IPv4 and IPv6 can be transported over the same PPP link, if both ends support both
protocols.

Protocol id Payload Padding

Figure 6.7 PPP frame
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Table 6.6 PPP protocols

PPP protocol Protocol id Description

LCP C021 Link-Control Protocol: the main protocol that establishes
and controls the link.

PAP C023 Password Authentication Protocol: one of the authentication
protocols.

CHAP C223 Challenge/Handshake Authentication Protocol: another
authentication protocol.

IPCP 8021 The Network Control Protocol for IPv4
IPv4 0021 IPv4 packet in the PPP payload.
IPV6CP 8057 The Network Control Protocol for IPv6
IPv6 0057 IPv6 packet in the PPP payload.

PPP prot id

0057

PPP payload

IPv6 payloadIPv6 header

Figure 6.8 IPv6 packet in a PPP frame

The process for establishing a PPP connection can be simply described as:

1. Start with LCP frames to establish the link, negotiate characteristics of the link, authen-
tication, compression, and layer 3 protocols.

2. Authentication is then performed using the negotiated authentication protocol.
3. Each network control protocol starts to negotiate its layer 3 specific parameters for the

establishment of layer 3 connectivity.
4. Layer 3 packets are sent on the wire. LCP still continues to monitor the link by sending

management frames.

IPv6 over PPP uses link-local addresses on both ends of the PPP link. However, point-
to-point links usually do not have interface identifiers, so they have to be made and be
obviously different between the two PPP peers. If a node already has some unique identifier
like an EUI-64 from another interface (e.g. Ethernet card), then it uses it as the interface
identifier on the PPP link. If no unique identifier is available on the node, then it generates
one randomly. However, peers exchange their interface identifier using the IPV6CP, so they
can verify the uniqueness on both ends. One peer could also ask the other peer for a unique
interface identifier. Since this verification is done at the control layer, there is no need to do
it again with the Duplicate Address Detection (DAD) process, so DAD is usually disabled
on PPP links.

Nowadays, PPP links connect a network behind the connecting PPP device. In IPv4, an
IPv4 NAT is used on the gateway, because the PPP link only gives one IPv4 addresses
and there is no way to negotiate a range of addresses and to autoconfigure the nodes inside
the network in IPv4. IPv6 has many ways to accomplish the goal without any address
translation. One way is to use a prefix delegation method to the router, such as DHCPv6-PD
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(see Section 5.5.4) or TSP (see Section 16.2.9.11). Another way is the multi-link subnet,
where a /64 is shared between the PPP link and the inside network, as discussed next.

6.8 Multi-link Subnets

With autoconfiguration, IPv6 helps the emergence of small autoconfigured networks, such
as home, personal area and sensor networks. These networks usually have one gateway to
the world, but they may have multiple links inside the small network. In a house, a link
could be dedicated to home entertainment, another for Internet traffic and another for control
such as alarm systems, each having a different set of policies. Multiple links require the
configuration of the gateway router, with manual intervention and substantial networking
skills, both not possible in small unmanaged networks. Moreover, a /64 prefix is sufficient
as address space for the network.

Multi-link subnets are defined [Huitema and Thaler, 2002] to support multiple links using
the same /64 address space, where the links are bridged together by the head router using a
modified behavior of the neighbor solicitation and advertisement process on the router.

Another use of this technology is for dial networks over PPP. A PPP connection started
by a home gateway gets only one IPv4 address from the PPP server. However, in IPv6, the
PPP link itself uses a /64 prefix. Sharing the /64 prefix of the PPP link with the network
behind the gateway enables the nodes to get reachable IPv6 addresses. This enables sharing
of the PPP connection [Yamamoto and Hagino, 2001] with reachable addresses for all nodes
behind the PPP gateway which avoids the need for address translation as done in IPv4 for
the same application.

Figure 6.9 shows an example, where nodes N1 and N2 are behind router R1 connected to
the IPv6 network through router R2 using PPP. The PPP link as well as LAN1 link share
the same 3ffe:b00:0:1::/64 prefix even if they are two distinct links.

N1, N2, the two interfaces of R1 and the PPP interface of R2 share the prefix.
A more complex scenario, shown in Figure 6.10, includes multiple links, such as LAN1,

LAN2 and LAN3 behind R1. However, the same /64 prefix is used for all the links behind R1.
Two methods are defined to enable multilink subnets: off-link and on-link.
The off-link method requires the gateway router (R1 in the examples) to send router

advertisements of the prefix (3ffe:b00:0:1::/64 in the examples) with the off-link bit, which

3ffe:b00:0:1::4

3ffe:b00:0:1::3

3ffe:b00:0:1::13ffe:b00:0:1::2

3ffe:b00:0:1::5

3ffe:b00:0:1::/64

N2

N1

LAN1

L2 network
IPv6R1 R2

IPv6 in PPP

Figure 6.9 Multilink subnet example with PPP sharing
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3ffe:b00:0:1::2 3ffe:b00:0:1::1

3ffe:b00:0:1::/64

LAN3 

LAN2
LAN1

L2 network
IPv6R1 R2

IPv6 in PPP

Figure 6.10 Multilink subnet example with multiple links

tells the nodes to configure themselves using the prefix but to consider any other node with
the same prefix as off-link. This results in the nodes sending traffic to the default gateway
when trying to reach other nodes on the same link. In Figure 6.10, when N1 wants to talk to
N2, the first packet is sent to R1, instead of directly to N2, because of the off-link property
in the prefix advertisement. R1 forwards the packet to the same physical link (LAN1) to N2
and sends a ICMP redirect message to N1 for the future packets.

The on-link method requires the gateway router to send router advertisements of the prefix
with the on-link bit, which tells the nodes to configure themselves using the prefix and
to consider any other node with the same prefix to be on the link, which is the normal
expected behavior. The nodes do neighbor solicitations on nodes that appear to be on the
same link because of the same prefix, but are not on the same link. Those off-link nodes
are not responding to neighbor solicitations since, by default, they are not receiving them.
In Figure 6.9, when N1 wants to reach 3ffe:b00:0:1::1, the PPP interface of R2, N1 sends
a neighbor solicitation to R2 on LAN1 but R2 never receives it. To make multilink subnets
work, R1 is a neighbor solicitation proxy for all nodes on the subnet, responding to neighbor
solicitation from any node to any node on all the links of the subnet.

These methods do not change any protocol but affect the implementation of the routers
involved in multilink subnets.

6.9 Router Advertisements of the Link MTU

Under some circumstances, the MTU of the link is not obvious. For example, when different
layer 2 technologies are bridged together, there might be two different MTUs on the same
logical link. Router advertisements can include the link MTU so that all nodes configure
their interface using the received MTU. The MTU parameter in router advertisements is
described in Table 5.11.

6.10 Managing Neighbors on Hosts and Routers

This section lists the implementation commands to manage neighbors and link specific
configurations. Commands are shown to modify the neighbor cache. However, under normal
operation, you do not need them.
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6.10.1 FreeBSD

On FreeBSD, the ‘ndp’ command is used to manage the neighbor discovery protocol, such
as managing neighbors.

6.10.1.1 Managing Neighbors

The ‘ndp -a’ command lists the neighbor cache.

# ndp -a

To add a static entry in the neighbor cache, use the ‘-s’ argument. The following
example installs the fe80::212:6bff:fe3a:9e9a neighbor with a link layer address
of 00:12:6b:3a:9e:9a.

# ndp -s fe80::212:6bff:fe3a:9e9a 00:12:6b:3a:9e:9a

The following deletes the fe80::212:6bff:fe3a:9e9a neighbor in the cache.

# ndp -d fe80::212:6bff:fe3a:9e9a

The ‘ndp -c’ command flushes the neighbor cache.

# ndp -c

6.10.1.2 MTU in Router Advertisements

Setting the link MTU in router advertisements is done in the ‘/etc/rtadvd.conf’ file.
The syntax of the file is described in Section 5.7.2.3. The following example sets the link
MTU to 1480 on the fxp0 interface.

# cat /etc/rtadvd.conf
fxp0:mtu#1480:

6.10.2 Linux

On Linux, the ‘ip’ command is used to manage many features of IPv6, such as managing
neighbors.

6.10.2.1 Managing Neighbors

The ‘ip -6 neighbour’ command is used to manage the neighbor cache. The ‘show’
sub-command lists the neighbor cache.

# ip -6 neighbour show
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Each entry in the cache is shown with the following information:

• IPv6 address;
• interface name;
• link-layer addresses;
• state of neighbor unreachability detection (same keywords as in Table 6.5);
• designation of the neighbor as a router.

To add a static entry in the neighbor cache, use the ‘add’ sub-command. The following
example installs the fe80::212:6bff:fe3a:9e9a neighbor with a link layer address
of 00:12:6b:3a:9e:9a on eth0 interface.

# ip -6 neighbour add fe80::212:6bff:fe3a:9e9a lladdr
00:12:6b:3a:9e:9a dev eth0 nud reachable

The following deletes the fe80::212:6bff:fe3a:9e9a neighbor in the cache.

# ip -6 neighbour delete fe80::212:6bff:fe3a:9e9a dev eth0

To flush the neighbor cache, use the ‘flush’ subcommand.

# ip -6 neighbour flush

6.10.2.2 MTU in Router Advertisements

The router advertisement daemon sends the link MTU with the ‘advLinkMTU’ statement
in its /etc/radvd.conf configuration file. The following example sets the link MTU to
1480 on the eth0 interface.

# cat /etc/radvd.conf
if eth0 {
advLinkMTU 1480;

};

6.10.3 Solaris

On Solaris, the router advertisement daemon sends the link MTU with the ‘AdvLinkMTU’
statement in its /etc/inet/ndpd.conf configuration file. The following example sets
the link MTU to 1480 on the le0 interface.

# cat /etc/inet/ndpd.conf
if le0 advLinkMTU 1480
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6.10.4 Windows

On Windows, to show the neighbor cache, use the ‘show neighbors’ subcommand.

C> netsh interface show neighbors

Windows enables the user to see the full destination cache, which means information on
destinations, including on-link and off-link.

C> netsh interface show destinationcache

To set the MTU on a interface, use the ‘mtu’ option of the ‘set interface’ subcommand,
as shown below.

C> netsh interface ipv6 set interface interface="Local Area
Connection" mtu=1480

6.10.5 Cisco

On IOS, the neighbor cache is shown with the ‘show ipv6 neighbors’ command.

show ipv6 neighbors

An interface name or address can be specified after the ‘neighbors’ keyword to restrict
the display.

To flush the neighbor cache, use the ‘clear ipv6 neighbors’ command.

clear ipv6 neighbors

To add a neighbor, use the ‘ipv6 neighbor’ command with the following information:

• IPv6 address of the neighbor;
• interface name on which the neighbor is reachable;
• link layer address of the neighbor.

The following example installs the fe80::212:6bff:fe3a:9e9a neighbor with a
link layer address of 00:12:6b:3a:9e:9a on Ethernet0 interface.

configure terminal
ipv6 neighbor fe80::212:6bff:fe3a:9e9a Ethernet0
0:12:6b:3a:9e:9a

Modifying the default link MTU on an interface triggers the advertisement of that MTU
in the router advertisements. The following example results in router advertisements of the
1480 MTU on the Ethernet0 link.

configure terminal
interface Ethernet0

ipv6 mtu 1480
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6.10.6 Hexago

On HexOS, the neighbor cache is shown with the ‘show ipv6 neighbors’ command.

show ipv6 neighbors

To flush the neighbor cache, use the ‘clear ipv6 neighbors’ command.

clear ipv6 neighbors

6.10.7 Juniper

On JunOS, the neighbor cache is shown with the ‘show ipv6 neighbors’ command.

show ipv6 neighbors

To flush the neighbor cache, use the ‘clear ipv6 neighbors’ command.

clear ipv6 neighbors

6.11 Summary

The neighbor discovery protocol is used to manage interactions on the link. Neighbor
solicitation is used to query the link layer address of the neighbor. It uses the solicited-node
multicast address of the neighbor as the destination address. The neighbor responds with a
neighbor advertisement containing its link layer address.

Duplicate address detection is used to verify the usability of an address by sending a
neighbor solicitation to its own address. If a neighbor advertisement is received, the address
is not used.

IPv6 supports most link-layer technologies. On Ethernet, the frame protocol id is 0x86dd
to identify IPv6 packets. Multicast IPv6 addresses are mapped to the 33-33-xx-xx-xx-xx
Ethernet multicast address range. Ethernet MAC addresses are used for the EUI-64 format
of an autoconfigured address.

Point-to-Point link are supported by the PPP protocol, which defines a new IPv6 control
protocol (IPv6CP). IPv4 and IPv6 packets can share the same PPP link if both ends are
configured appropriately.

MTU can be advertised through router advertisements.
IPv6 handling of link-layer interaction is more efficient than IPv4.
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7
Internet Control Message Protocol

The Internet Control Message Protocol (ICMP) is used to send information and errors to
source nodes. This chapter describes the functionality of ICMP. The neighbor discovery
protocol uses ICMP as a transport protocol. The chapter ends with configuration examples
of major implementations.

7.1 ICMP

ICMP in IPv4 and IPv6 is used by intermediate or destination nodes to inform source nodes
about problems and issues related to the delivery of datagrams. ICMP is also used for
diagnostic purposes.

For example, in Figure 7.1, node A sends a datagram to B (step 1), but the router R1
cannot forward the datagram because B is unreachable. R1 sends an ICMP error message
back to A (step 2), about the unreachability of B.

IPv6 ICMP [RFC2463] is similar to IPv4, but has a few enhancements:

• ICMP is carried in an IPv6 datagram identified by a specific Next Header field.
• A checksum is computed, since any layer above IPv6 should compute a checksum as

discussed in Section 3.7.1.
• New messages are defined for the IPv6 specifics.
• In an ICMP error message, the original datagram is put within the error packet for easier

recovery by the source.

An ICMP message is included in an IPv6 datagram by setting the Next Header field to
58, as shown in Figure 7.2. The ICMP header contains a type field which identifies the type
of message. The code field further qualifies the specifics of the message. The next sections
show the various type and code values and meanings. A checksum is computed (using a

Migrating to IPv6: A Practical Guide to Implementing IPv6 in Mobile and Fixed Networks Marc Blanchet
© 2006 John Wiley & Sons, Ltd
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(1)

(2)

A B

R1

Figure 7.1 ICMP message sent by an intermediate node

IPv6
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Type Code Checksum

Next Header = 58

ICMP additional info
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Figure 7.2 ICMP Header

pseudo-header, as described in Section 19.1) because ICMP is a transport protocol, relative
to IPv6.

When an ICMP message is sent by an intermediate node because it cannot forward a
datagram, the intermediate node sends the ICMP message back to the source of the original
datagram. Any IPv6 node listens and processes ICMP messages.

Two classes of ICMP messages are defined: error messages that must be processed by
nodes, and informational messages that may be ignored by nodes.

7.1.1 Error Messages

Error messages are identified by a type field value between 0 and 127.1 Nodes sending
an ICMP error message always include the original datagram in the payload of the ICMP
message as shown in Figure 7.3. However, the resulting size of the ICMP datagram is less or
equal to the minimum IPv6 MTU (1280 octets), to guarantee that under any circumstances
the error message reaches the source.

Inserting the original IPv6 datagram in the ICMP error message enables the source
node receiving the error message to find the context of the original datagram (source and
destination addresses and ports), to process the error correctly and push it to the right
upper-layer for further processing at the application level.

1 In other words, an error message is when the most significant bit of the type field is set to ‘0’.
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Figure 7.3 Original datagram in the ICMP error datagram payload

There are four types of error messages:

• Destination Unreachable;
• Packet Too Big;
• Time Exceeded;
• Parameter Problem.

The four types are distinguished by the type field value in the ICMP header.

7.1.1.1 Destination Unreachable

Destination Unreachable error messages2 are sent by intermediate nodes when they cannot
reach the destination of the datagram. Four events are defined for this error message and are
described in Table 7.1.

7.1.1.2 Packet Too Big

Packet Too Big error messages3 are sent by intermediate nodes when they cannot forward the
datagram to the next hop because the MTU of the link is smaller than the size of the datagram.
The ICMP error message sent back to the source contains the MTU of the next link so the source
can adjust its path MTU and resend the datagram with the smaller MTU. Packet Too Big is
an essential part of the Path MTU discovery, as discussed in Section 3.6.2. If firewalls in the
path prohibit ICMP messages, then the PMTU discovery process does not work. In this case,
nodes uses the minimum possible MTU, 1280, even if the whole path supports a larger MTU.

Important to remember:

Firewalls should let ICMP Packet Too Big messages pass through in order to have the
Path MTU discovery process work.

2 Identified by the type field value of ‘1’.
3 Identified by the type field value of ‘2’.



134 Migrating to IPv6

Table 7.1 Destination Unreachable message types

Code Definition Description

0 No route to
destination

Sent by a intermediate node (e.g. router) when it does not find an
entry in its routing table for the prefix in the destination address of
a datagram.

1 Communication
administratively
prohibited

Sent by a intermediate node (e.g. firewall) when it has an entry in
its routing table but the forwarding is prohibited because of a
filtering policy.

3 Address unreachable Sent by a intermediate node (e.g. router) when it cannot deliver the
packet to the destination, but the reason is not related to the
previous codes. For example, the router cannot reach the link-layer
address of the node.

4 Port unreachable Sent by the destination node when the packet reached the
destination, but there is no transport protocol listener on the
destination port.

Note: Some firewall implementations do not send ICMP messages, to hide themselves. The application
on the source is then waiting for the timeout, which causes more perceived delays. The correct
firewall behavior is to send the ICMP destination unreachable with the ‘communication administratively
prohibited’ code.

7.1.1.3 Time Exceeded

Each intermediate node in the path decrements the Hop Limit field in the IP header by one.
Since the source node typically sets the Hop Limit field to a large value, the Hop Limit field
in a datagram should not have the value of 1 unless there is a routing loop.

Time Exceeded messages4 are sent by an intermediate node when it receives a datagram
with the Hop Limit field equal to 1 (or zero). The intermediate node discards the original
datagram.

Two events are defined for this error message and are described in Table 7.2.
The name ‘Time Exceeded’ is inherited from the original IPv4 specification [RFC791],

where the Time-to-live (TTL) field was defined as the lifetime of the datagram in seconds,
rather than the number of hops.

If a destination node receiving fragments does not receive all fragments within 60 seconds,
the node replies to the source node with an ICMP Time Exceeded error message with a code
value of 1 (fragment reassembly time exceeded).

Table 7.2 Time exceeded message types

Code Definition Description

0 Hop limit exceeded Sent by a intermediate node when it receives a datagram with the
Hop Limit field equal to 1 or 0.

1 Fragment reassembly
time exceeded

Sent by a destination node when it cannot assemble all fragments;
for example, when one fragment is missing after a maximum period
of time (default = 60 seconds).

4 Identified by the type field value of ‘3’.
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7.1.1.4 Parameter Problem

When there is an inconsistency in the IP header of a datagram, the Parameter Problem error
message5 is sent to the source by the node detecting the problem. The ICMP header contains
a pointer to the problematic datagram included in the payload of the message. Three events
are defined for this error message and are described in Table 7.3.

If a destination node receives a datagram with a Next Header not implemented in the
node, then it replies to the source node with an ICMP parameter problem error message.6

7.1.2 Informational Messages

ICMP informational messages are identified by a type field value between 128 and 255.
The ‘ping’ command (in many IPv6 implementations ‘ping6’) sends the ICMP infor-

mational Echo request (type = 128) to the target. The target responds with the Echo reply
(type = 129). Two fields in the ICMP headers are set by the source to identify uniquely
every echo request and reply. Table 7.4 lists the defined ICMP informational messages.

The list of ICMPv6 messages is maintained by the IANA [IANA; 2001].

Table 7.3 Parameter problem message types

Code Definition Description

0 Erroneous header field A header field contains invalid data.
1 Unrecognized Next

Header type
The Next Header value is unknown to the node that is
processing the header.

2 Unrecognized IPv6 option An extension header contains an unknown value.

Table 7.4 ICMP informational messages

ICMP type Definition Section

128 Echo request This section
129 Echo reply This section
130 Multicast group membership query
131 Multicast group membership report See Chapter 15
132 Multicast group membership termination
133 Router Solicitation
134 Router Advertisement

See Section 5.2.2

135 Neighbor Solicitation
136 Neighbor Advertisement

See Section 6.2

137 Redirect See Section 9.3
138 Router Renumbering See Section 9.10
139 Node Information query
140 Node Information reply

See Section 8.5

141 Inverse Neighbor Solicitation See [RFC3122]; used for frame relay
networks.142 Inverse Neighbor Advertisement

5 Identified by the type field value of ‘4’.
6 With a code value of 1 (Unrecognized Next Header type).
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7.2 Neighbor Discovery

Neighbor Discovery is a control protocol that includes several functions:

• neighbor solicitation and advertisement, previously discussed in Section 6.2;
• router solicitation and advertisement, previously discussed in Section 5.2.2;
• route redirection, discussed in Section 9.3.

All Neighbor Discovery messages are encapsulated using ICMP transport and are identified
by specific ICMP types; they use ICMP as their transport protocol, as shown with types
133–136 in Table 7.4.

7.3 Hop Limit Set to 255

All Neighbor Discovery datagrams, used for link scope interactions, have the Hop Limit field
in the IP header set to 255. This might be considered as strange since 255 is the maximum
value of the Hop limit and permits the packet to be forwarded through 254 routers before
being discarded, while it should not leave the link!

However, a router advertisement or a neighbor advertisement is only valid on the same
link it is sent, so routers do not forward these packets. One might think that a Hop Limit
value of 0 or 1 is the right one to make sure the packet would not be forwarded. But if
the value is 0 or 1, the host cannot really verify if the router advertisement was sent by a
router on the link or if it comes from a far router by some trick with the Hop Limit being
decremented to 0 when it reaches the link. With the source router setting the Hop Limit to
255 in the router advertisement datagram, if the host receives a Hop Limit different than
255 it concludes that the datagram does not come from a router on the link, but has been
forwarded from another link: the host discards the router advertisement. This disables a
denial-of-service attack coming from outside: the datagram would have a Hop Limit value
smaller than 255.

This feature of setting the Hop Limit to 255 is used in many other protocols such as RIP
(see Section 9.5).

7.4 Managing ICMP on Hosts and Routers

The ping command sends an ICMP echo request. It is used for troubleshooting.

7.4.1 FreeBSD

To send an ICMP echo request to a node, use ‘ping6’, as shown below.

% ping6 3ffe:b00:0:1::2

When sending to a link-local address, add after the address a ‘%’ and the interface name on
which the packet should be sent.

% ping6 fe80::1%fxp0
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7.4.2 Linux

To send an ICMP echo request to a node, use ‘ping6’, as shown below.

% ping6 3ffe:b00:0:1::2

When sending to a link-local address, add the ‘-I’ option followed by the interface name
on which the packet should be sent.

% ping6 -I eth0 fe80::1

7.4.3 Solaris

To send an ICMP echo request to a node, use ‘ping’, as shown below.

% ping 3ffe:b00:0:1::2

When sending to a link-local address, add the ‘-i’ option followed by the interface name
on which the packet should be sent.

% ping -i le0 fe80::1

When a destination host has both IPv4 and IPv6 addresses, use the ‘-A inet6’ to force
sending an IPv6 ICMP echo request.

% ping -A inet6 host1.example.org

7.4.4 Windows

To send an ICMP echo request to a node, use ‘ping’, as shown below.

C> ping 3ffe:b00:0:1::2

When sending to a link-local address, add after the address a ‘%’ and the interface index on
which the packet should be sent.

C> ping fe80::1%3

To force the use of IPv6, the ‘-6’ option can be used.

C> ping -6 host1.example.org

7.4.5 Cisco

To send an ICMP echo request to a node, use ‘ping ipv6’, as shown below.

> ping ipv6 3ffe:b00:1::2

Extended ping is also available.
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IOS enables rate-limiting for ICMP messages to avoid denial-of-service attacks. The
interval between ICMP error messages is set with the ‘ipv6 icmp’ command. The following
sets the interval to 100 milliseconds.

configure terminal
ipv6 icmp error-interval 100

To troubleshoot ICMP messages, use the debug command.

enable
debug ipv6 icmp

7.4.6 Hexago

To send an ICMP echo request to a node, use ‘ping ipv6’, as shown below.

> ping ipv6 3ffe:b00:1::2

7.4.7 Juniper

To send an ICMP echo request to a node, use ‘ping’, as shown below.

> ping 3ffe:b00:1::2

When sending to a link-local address, add the ‘interface’ option followed by the
interface name on which the packet should be sent.

> ping fe80::1 interface fe-0/0/1

7.5 Summary

ICMPv6 is similar to ICMPv4. Error and informational messages are used by intermediate
or destination nodes to inform source nodes about issues concerning sent packets. ICMPv6
is also used as the transport for Neighbor Discovery. ICMPv6 is a transport protocol relative
to IPv6.

7.6 References
IANA, ICMPv6 TYPE NUMBERS, June 2001, http://www.iana.org/assignments/icmpv6-parameters
[RFC791] Postel, J., ‘Internet Protocol’, STD 5, RFC 791, September 1981.
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Version 6 (IPv6) Specification’, RFC 2463, December 1998.
[RFC3122] Conta, A., ‘Extensions to IPv6 Neighbor Discovery for Inverse Discovery Specification’, RFC 3122,

June 2001.
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Naming with DNS and Selecting
an Address

Described simply, the Domain Name System (DNS) is a distributed database across the
Internet mapping names and addresses. Modifications to DNS were done to support IPv6
addresses.

This chapter describes the new AAAA record for the hostname to IPv6 address mapping.
IPv6 address to hostname is accomplished with a new reverse tree top-level domain: ip6.arpa.
The transport of DNS queries is shown for both IPv4 and IPv6. An example is provided to help
understand which transport protocol can be used, and where. Some enhanced naming services
such as DNS server discovery and node information query are presented. Additionally, since
nodes now have an IPv4 address and multiple IPv6 addresses, the selection of the right
source and destination address, based on the DNS answers, are described. The chapter ends
with configuration examples of major implementations.

8.1 Hostname To IPv6 Address with the AAAA Record

IPv4 DNS defines an address record called ‘A’, for Address, which maps a hostname to an
IPv4 address. The direct equivalent of the A record in IPv6 is the ‘AAAA’ record. AAAA
maps a hostname to an IPv6 address [RFC3596], as shown in Table 8.1. Since IPv6 addresses
are four times longer than IPv4 addresses, the name of the IPv6 equivalent record is four
times the letter ‘A’, thus ‘AAAA’.

A host may have IPv4 and IPv6 addresses, but may be known by only one name. In
this case, the name maps to two records: an A record for the IPv4 address and an AAAA
record for the IPv6 address. For example, if the hostname is ‘host1.example.org’ and the
IPv4 and IPv6 addresses are 192.0.2.1 and 3ffe:b00:0:1::1 respectively, then two records
will be defined for that host, as illustrated in Table 8.2.

Migrating to IPv6: A Practical Guide to Implementing IPv6 in Mobile and Fixed Networks Marc Blanchet
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Table 8.1 A and AAAA record types

Record type Maps a hostname to

A An IPv4 address
AAAA An IPv6 address

Table 8.2 Example of A and AAAA records

Name Record type Value

host1.example.org A 10.1.2.3
host1.example.org AAAA 3ffe:b00:0:1::1

Table 8.3 Multiple AAAA records

Name Record type Value

host1.example.org AAAA 3ffe:b00:0:1:212:6bff:fe3a:9e9a
host1.example.org AAAA 2001:1111:30:1:212:6bff:fe3a:9e9a

As shown in the second line of Table 8.2, IPv6 addresses can be written in DNS AAAA
records using the compressed form, as described in Section 4.2.1.

If a host has multiple IPv6 addresses, then the hostname maps to multiple AAAA records,
as illustrated in Table 8.3.

8.2 IPv6 Address To Hostname

In the DNS, the mapping from an IP address to a hostname, often called reverse mapping, is
not bound to the forward mapping (hostname to IP address). A different record, called PTR
(PTR for pointer) is used for the reverse mapping. Since the DNS always uses a name as a
label, the IP addresses are converted to a pseudo-name under a special top-level domain.

In IPv4, the top-level domain is ‘in-addr.arpa’ and the address is written in four labels in
the reverse order. For example, if the inverse mapping for 192.0.1.2 is host1.example.org,
then the DNS record is as described in Table 8.4.

The name in the left part of the record is constructed by inverting the IPv4 address, adding
dots between each decimal digit and appending the suffix ‘in-addr.arpa’. The right part of
the record is the hostname associated with the IP address.

IPv6 uses the same PTR record but constructs the left part of the record by adding dots
between each hexadecimal digit of the fully expanded IPv6 address and by using a different

Table 8.4 Example of an IPv4 PTR record

Name DNS record Value

2.1.0.192.in-addr.arpa PTR host1.example.org
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Table 8.5 Example of an IPv6 PTR record

Name DNS
record

Value

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0.0.0.0.0.0.0.b.0.e.f.f.3.ip6.arpa PTR host2.example.org

top-level domain name, ‘ip6.arpa’. For example, if the reverse mapping for 3ffe:b00:0:1::1
is host2.example.org, then the DNS record is as described in Table 8.5.

On the left part of the record, the IPv6 address (3ffe:b00:0:1::1) is fully expanded with all
zeros (3ffe:0b00:0000:0001:0000:0000:0000:0001), then inverted and dots inserted between
every hexadecimal digit. If one had to type this long string on a keyboard, the chances of
mistyping it are pretty high. Configuration tools and user interfaces are needed to manage
IPv6 in DNS!

The reverse mapping (PTR) is used much less than the forward mapping (A or AAAA),
with users employing the forward mapping all the time but most of them never using the
reverse mapping. Reverse mapping is mainly used by servers to get a name corresponding
to an incoming connection from an IP address. This helps with gathering statistics or
troubleshooting, and sometimes basic security. Many organizations and ISPs do not care to
enter the reverse mapping for their computers in the DNS which results in a low real value
of the PTR record.

8.3 Transport

The DNS is a distributed database, which contains data for both IPv4 and IPv6 addresses.
The transport mechanism for sending queries and answers is independent of the requested
data type. For example, one could use IPv4 to transport IPv6 address DNS queries; in
this case, the data in the database are IPv6 addresses but the transport mechanism is IPv4.
Nevertheless, the transport is usually related to the query, since it makes no sense to request
IPv6 addresses if the node cannot use IPv6.

Figure 8.1 shows a typical resolution path for the name host1.example.org between a DNS
client and the authoritative servers. The process is described in Table 8.6.

In the current IPv4 Internet, all queries, shown as arrows in Figure 8.1, use IPv4 transport.
Queries about the IPv6 address of host1.example.org can be sent using IPv4 transport or
IPv6 or both along the resolution path.

The transport protocol between the client (A) and the local DNS server (B), shown as step
1 in Figure 8.1, is chosen based on the DNS configuration of the client (A) which identifies
the IP address of its local DNS server (B). If the client refers to its local DNS server (B) by
its IPv6 address and the server is IPv6 configured and reachable from the client, the client
connects to the local DNS server using the IPv6 address and transport.

The transport protocol between the local DNS server (B) and the root servers (C), shown
as step 2, is chosen based on the configuration of the local DNS server which identifies
the IP address of the root servers. If the root servers have IPv6 addresses, are reachable by
IPv6 and the configuration of the local DNS server contains the IPv6 address of the root
servers, then the local DNS server will connect to the root servers using the IPv6 address
and transport.
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Figure 8.1 DNS resolution process for host1.example.org

Table 8.6 DNS query process

From To Step

1 A B The DNS client (A) sends the request for the IP address of
host1.example.org to its local DNS server (B).

2 B C The local DNS server (B) then sends the query to the root
servers (C). The addresses of the root servers are statically
configured on the local DNS server (B).

3 C B One root server (C) answers back the information about the
authoritative server for .org (D).

4 B D The local DNS server (B) sends the same query to the authoritative
server for .org (D).

5 D B The local DNS server (B) receives the answer about the
authoritative server for example.org (E) from the authoritative
server for .org (D).

6 B E The local DNS server (B) sends the query to the authoritative
server for example.org (E).

7 E B The local DNS server receives the answer for host1.example.org
from the authoritative server for example.org (E).

8 B A The local DNS server (B) returns the information to the client (A).

The transport protocol between the local DNS server (B) and all other authoritative servers
is chosen based on the type of addresses sent by the parent authoritative server. As in step 3
of Figure 8.1, if the root server (C), the parent authoritative server for .org, returns an IPv6
address for the .org authoritative server (D), then the local DNS server (B) will connect to
D using the IPv6 address and transport.
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To have the full resolution path over IPv6 transport, the client, the local DNS server, the
root server and all authoritative servers for all levels of the domain name must have IPv6
addresses and transport. For the client perspective, only the connection to the local DNS
server needs to be IPv6, all other connections may be using IPv4 transport.

8.4 DNS Server Discovery

With autoconfiguration, an IPv6 node can boot and configure itself with addresses, prefixes
and default routers. However, its DNS server is not configured. At the time of writing, the
IETF is still investigating a way [Thaler, 2001] to implement a DNS discovery function
where nodes discover the local DNS server without prior static configuration.

8.5 Node Information Query

With link-local addresses and other mechanisms, ad hoc networks are easy to setup with
IPv6. In this context, no DNS server is needed and available. An extension of the ICMP
protocol [Crawford, 2003] is proposed to enable nodes to query their neighbors for their
name in the absence of a DNS service.

The ICMP packet is sent by the node requesting information to its neighbor. It contains
the request for:

• the name corresponding to an IPv6 or IPv4 address;
• the IP addresses corresponding to the node.

When querying for a name, the packet is sent to a multicast address formed by
FF02:0:0:0:0:2::/96 and a md5 hash of the name for the rightmost 32 bits of the multicast
group. A node having the name is listening to this multicast address.

The Kame implementation, included in FreeBSD, NetBSD, OpenBSD and MacOS X,
and the USAGI implementation, an IPv6 Linux distribution, have implemented this protocol
proposal.

8.6 IP Address Selection

An application must be updated to support IPv6. Inside an IPv4 client application, the function
call requesting the DNS A record for a given destination hostname is gethostbyname().
This function call is replaced by getaddrinfo(), discussed in details in Section 21.4.
This new function requests AAAA and A records and returns a list of addresses, in any
order and of any address family, to the caller. The application may receive both IPv4 and
IPv6 addresses for the same destination. Which IP address the application should use is left
to the application.

The application must traverse the list of addresses and try to connect to the targeted
addresses in sequence until the connection is successful. If the destination host has IPv4 and
IPv6 addresses in the DNS, the typical behavior of applications is to start connecting to IPv6
addresses first. However, giving preference to IPv6 might not always be appropriate.

Moreover, given a destination address, the node has to choose which source address it
will use for the connection. A site scoped source address would be a wrong choice for a
global destination address.
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The mechanism [RFC3484] to choose the source and the destination address matches the
source and destination addresses in the longest match possible. For example, a global scoped
destination address will be matched with a global scoped source address and a link scoped
destination address will be matched with a link scoped source address. Some implementations
provide a configuration table to modify the default behavior.

This mechanism is further discussed in the book Web site (http://www.ipv6book.ca).

8.7 Configuring DNS and Address Selection on Hosts and Routers

This section describes the various implementations regarding DNS and address selection.
Feel free to skip the implementations in which you are not interested.

8.7.1 Configuring a Unix Client

Unix clients, such as FreeBSD, OpenBSD, NetBSD, MacOSX1, Linux and Solaris, use the
‘/etc/resolv.conf’ file to list the local DNS servers, corresponding to the B server in
Figure 8.1. The syntax is:

nameserver <ip_address>

Multiple lines can be used to specify multiple local DNS servers for redundancy. Note
that specifying an IPv6 address means that the client will use IPv6 transport to send the
requests to the DNS server, irrelevant of the type of request.

For example, if the local DNS server has 3ffe:b00:0:1::3 as its IPv6 address, the
‘/etc/resolv.conf’ file contains:

# cat /etc/resolv.conf
nameserver 3ffe:b00:0:1::3

8.7.2 Configuring BIND

BIND [BIND] is a popular DNS server implementation. BIND version 4.9.5 and above
supports the AAAA record. IPv6 transport is supported in BIND version 8.4.0 and above.

BIND is used in most Unix-based operating systems, such as FreeBSD, OpenBSD,
NetBSD, Linux and Solaris. This section describes the syntax of BIND zone files for IPv6
features.

8.7.2.1 AAAA

The hostname to IP address mapping for an IPv4 node is registered in BIND with the A
record syntax: ‘<name> IN A <ipv4_address>’, as the following example:

host1.example.org. IN A 10.1.2.3

1 In fact, MacOSX creates and manages the resolv.conf file for compatibility purposes, and the OS resolver
process lookupd does the name resolution function.
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For an IPv6 node, the AAAA record syntax is: ‘<name> IN A <ipv6_address>’,
as the following example:

host1.example.org. IN AAAA 3ffe:b00:0:1::1

The IPv6 address can be written in its full or compressed form.
The examples above use the full name. Usually the record is put in the domain name

zone file. For instance, the AAAA record would be put in the ‘example.org.zone’ file
specified in the zone directive of the ‘/etc/named.conf’ file.

# cat /etc/named.conf
options {

directory "/etc/namedb";
};
zone "example.org" IN {

type master;
file "example.org.zone";

};
# cat /etc/namedb/example.org.zone
host1 IN AAAA 3ffe:b00:0:1::1

8.7.2.2 PTR

The IP address to hostname for an IPv4 node is registered in BIND with the PTR record
syntax: ‘ip_address_name IN PTR hostname’ and uses the in-addr.arpa top-
level domain:

1.2.0.192.in-addr.arpa IN PTR host1.example.org

For an IPv6 node, the same PTR record is used with the IPv6 complete address reversed
and the ip6.arpa top-level domain:

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0.0.0.0.0.0.0.b.0.e.f.
f.3.ip6.arpa. IN PTR host1.example.org.

The examples above use the full name. Usually the record is put in the ip6.arpa zone file
respective to the IPv6 address delegation. For instance, the PTR record would be put in the
“3ffe0b000000.zone” file specified in the zone directive of the “/etc/named.conf”
file. The assumption is that one owns the 3ffe:0b00:0000::/48 address space and its reverse
DNS delegation.

# cat /etc/named.conf
options {

directory "/etc/namedb";
};
zone "0.0.0.0.0.0.b.0.e.f.f.3.ip6.arpa" IN {
type master;
file "3ffe0b000000.zone";

};
# cat /etc/namedb/3ffe0b000000.zone
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0 IN PTR
host1.example.org.
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8.7.3 Troubleshooting with Dig
Dig is a tool used on Unix systems to troubleshoot DNS. To query an A record for
host1.example.org, the following command is used:

# dig host1.example.org a

To query a AAAA record for host1.example.org, the “a” argument is replaced by “aaaa”:

# dig host1.example.org aaaa

To query both records at the same time, the ‘any’ argument is used:

# dig host1.example.org any

8.7.4 FreeBSD

FreeBSD uses the ‘/etc/resolv.conf’ file for DNS clients, as described in
Section 8.7.1, BIND for DNS servers, as described in Section 8.7.2, and dig for troubleshoot-
ing as described in Section 8.7.3.

8.7.4.1 Node Information Query

FreeBSD also implements the ICMP node information query by the ‘-w’ option in the ping
command. The following example makes an ICMP node information query to all nodes on
the link (ff02::1).

% ping6 -w ff02::1%fxp0

8.7.5 Linux

Linux uses the ‘/etc/resolv.conf’ file for DNS clients, as described in Section 8.7.1,
BIND for DNS servers, as described in Section 8.7.2, and dig for troubleshooting as described
in Section 8.7.3.

8.7.6 Solaris

Solaris uses the ‘/etc/resolv.conf’ file for DNS clients, as described in Section 8.7.1,
BIND for DNS servers, as described in Section 8.7.2, and dig for troubleshooting as described
in Section 8.7.3.

8.7.7 Windows

This section describes the specifics of Windows regarding DNS.
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8.7.7.1 Static DNS Server Entry

To configure a static DNS server entry, use the ‘add dns’ subcommand of the ‘netsh
interface ipv6’ command.

C> netsh interface ipv6 add dns 3ffe:b00:0:1::3

8.7.7.2 Resolution Preference

By default in Windows, if a destination name has both IPv4 and IPv6 addresses in the DNS,
then IPv6 addresses are preferred over IPv4 ones.

8.7.7.3 DNS Dynamic Update

The ‘Register This Connection’s Address In DNS’ check box is set by default. The node
automatically tries to register the AAAA records for the following addresses of all its inter-
faces: global or unique-local addresses with EUI-64 or ISATAP. 6to4, temporary addresses
and link-local addresses are not registered.

8.7.8 Cisco

While a router does not deal with DNS queries in its forwarding capabilities, the CLI resolves
DNS names.

8.7.8.1 Static DNS Server Entry

To configure a static DNS server entry, use the ‘ip name-server <address>’
command.

configure terminal
ip name-server 3ffe:b00:0:1::3

8.7.8.2 Resolution

A hostname put in commands such as tftp, ssh or telnet will be resolved first to IPv6
addresses if an AAAA record exists. If not, an A record will be queried.

IOS supports the name to address and address to name resolution when typing a hostname
or an address directly after the prompt. By default, the AAAA request is done first on the
hostname. If it succeeds, then no A request is done.

8.7.9 Hexago

HexOS is a migration-deployment operating system implementing the tunnel broker mech-
anism and as such it does not deal with DNS queries in its forwarding function. How-
ever, automated registration of tunnel endpoints and automated reverse tree delegation are
provided. Full capabilities and configuration for HexOS are presented in Sections 16.2.9
and 16.5.7.
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8.7.9.1 Static DNS Server Entry

To configure a static DNS server entry, use the ‘ip name-server <address>’
command.

configure terminal
ip name-server 3ffe:b00:0:1::3

8.7.10 Juniper

While a router does not deal with DNS queries in its forwarding capabilities, the CLI resolves
DNS names.

8.7.10.1 Static DNS Server Entry

To configure a static DNS server entry, use the ‘name-server <address>’ statement.

System {
name-server {
3ffe:b00:0:1::3;

}
}

8.7.10.2 Resolution

A hostname put in commands such as ssh or telnet will be resolved first to IPv6 addresses
if an AAAA record exists. If not, an A record will be queried.

8.8 Summary

For hostname to IPv6 address mapping, the new AAAA record is used. One hostname can
map to a mix of IPv4 and IPv6 addresses using A and AAAA records. IPv6 address to
hostname mapping still uses the PTR record but with the new ip6.arpa top-level domain
name.

Transport of DNS queries can be done over IPv4 or IPv6 depending on the IP configuration
and NS delegation of the parent DNS server for a label. For one client query, the DNS
packets may travel over any IP protocol on any segment of the resolution path.

New enhanced services such as DNS server discovery and node information query are
available to help the autoconfiguration.

Source and destination address selection is based on an algorithm, where the preferences
can be changed if the implementation enables it.
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Routing

IPv6 did not change the fundamentals of IP routing. It is still based on:

• the longest prefix match;
• the possible use of source routing;
• redirects with ICMP;
• the same routing protocols: Routing Information Protocol (RIP), Open Shortest Path First

(OSPF), Intermediate System to Intermediate System (IS-IS) and Border Gateway Protocol
(BGP).

No major change in the routing means that a routing expert feels at home when dealing
with IPv6 routing. However, there are some changes made to handle routing more efficiently
or to make use of IPv6 facilities. This chapter describes these changes, starting with required
router addresses, source routing and route redirection. It then presents the routing protocols:
RIP, OSPF, IS-IS and BGP. Other topics related to routing such as router renumbering,
multihoming and route aggregation are also discussed.

9.1 Required Router Addresses

A router has many configured addresses. Since a router is a node with an additional for-
warding function, it inherits all required node addresses as listed in Table 5.9, as well as
additional addresses as shown in Table 9.1.

9.2 Source Routing with the Routing Header

Source routing is a way for a source node to influence the path taken by the packet sent to
the destination. It does so by including in the header a list of routers that the packet should
go through.

Migrating to IPv6: A Practical Guide to Implementing IPv6 in Mobile and Fixed Networks Marc Blanchet
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Table 9.1 Required router addresses

Quantity Address Requirement Context

All required node addresses as defined in Table 5.9
One the subnet-router anycast must be joined on each forwarding interface
One the all-routers multicast must be joined on each forwarding interface
Any routing protocols specific multicast must be joined on each interface enabled for that

routing protocol

IPv4 source routing is handled by the Loose and Strict Source Route options. Each router
in the path has to look at the options and see if its IP address is in the list inside the options
part of the IP header. This causes all routers in the path to do special processing for those
datagrams, which is very slow because the options are not efficiently put on boundaries for
fast memory lookup in hardware based processors.

The IPv6 routing header integrates both the IPv4 Loose and Strict options in one function
by using the routing extension header, which is processed by only relevant routers involved
in the source routing in the path. Not all routers in the path have to look at the routing
header, which is a very important improvement for hardware-based fast forwarding.

The routing header contains a list of intermediate nodes, or routers, that need to intercept
the datagram and enable special processing for it. Each listed intermediate node is not
necessarily the next hop, so not all intermediate nodes in the path need to be listed, but
they could be, if one wants the strict source route feature. Intermediate nodes are generally
routers, so the word router is used interchangeably.

Figure 9.1 shows an example of the routing header processing where the Network 1, 2, 3
and 4 clouds have many routers, not shown, inside each one. The source node (A) wants to
force the path of the packet to the destination node (E) first through routers B and then D.

When the source node (A) sends a datagram with the routing header, it constructs the packet
internally with the source address as itself (A), the destination address as the destination
node (E), and puts in the routing header the list of routers to go through: first B and then D,
as shown in Figure 9.1.

If the source node (A) is using any IPv6 security protection, the protection is calculated
on the internal version of the packet.

Before sending the datagram out, as shown in Figure 9.2, the source node (A) puts the
IPv6 address of the first router in the list (B = 3ffe:b00:0:3::1) as the destination address of
the datagram, and puts the address of the other routers (D = 3ffe:b00:0:6::1) in the routing
header, shown as ‘in1’, and the destination node address (E = 3ffe:b00:0:a::1) at the end
of the list of routers in the routing header, shown as ‘in2’. As the datagram goes out of the
source node (A), its destination address is the first router (B), shown as ‘dst’.

Any router inside Network 1 sees the packets as normal and does not inspect the packet
further in the extension headers. This is an important advantage of IPv6. Only the router that
has the destination address will process the packet specifically.

When the first router (B) receives the datagram, it looks inside the routing header for
the next router in the list (D) and puts the next router address (D = 3ffe:b00:0:6::1) as the
destination address of the datagram and swaps its own address (B = 3ffe:b00:0:3::1) in the
now free slot of D. A counter is kept in the routing header to point to the next hop. Then, all
the routers in Network 2 do not look at the packet any more than at a normal IPv6 packet.
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Figure 9.2 Internal Source routing packet

Each router in the list does the same processing as B did until the last router is reached.
This last router, D in this example, puts the final destination (E) address (3ffe:b00:0:a::1) as
the destination address before sending the datagram. When the destination node (E) receives
the datagram, the datagram looks like a normal datagram with the source and destination
addresses being the source (A) and destination (E) nodes respectively. However, during the
processing of the routing header, the list of routers is preserved in the header, as shown in
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the last routing header with ‘in1’ and ‘in2’ fields, which means that the destination node
could look at the list of routers if needed. The header is preserved identical to the constructed
one internally inside A, so any integrity protection can be verified.

Since the final destination address is not the one put in the destination address field of the
datagram when it goes out of the source node, the transport checksums have to be calculated
carefully on the final destination address, not the one in the field.

As the destination address is always the next source router in the path, the routing policy
of a network is preserved and can be applied correctly on the destination address.

MobileIPv6 uses a degenerated case of source routing, where only one intermediate node
is put in the list. Actually, this intermediate node is the care-of-address of the destination
node, while the final destination address is the home address. This optimizes the routing of
the datagram to the mobile node and keeps the above-the-IP-stack application unaware of
mobility because the application receives the home address as the destination address of the
datagram. MobileIPv6 is discussed in Chapter 11.

9.3 Route Redirect

Route redirection is used when a router, usually the default router for a node, receives a
packet that should instead be forwarded to another router on the same link. This default
router sends an ICMP redirect message to the originating node giving the IP address of the
other router.

In Figure 9.3, node A wants to send a packet to node D: node A has B as its default
router. Since node A finds that D is outside of the attached link, then A sends the packet,
with the destination address of D (3ffe:b00:2::1), to its default router (B). Router B looks
in its routing table and find that router C is the right router to reach node D. Then router B
sends an ICMP redirect message to A stating that the packet for D should be sent through
router C. Node A puts in its own routing table that the route for D is through C. At the same
time, router B forwards the initial packet to C. Node A then sends the subsequent packets to
D through C. Table 9.2 shows the sequence of packets sent for the ICMP redirect example.

The Redirect message sent by the router should include as much data as possible of the
original packet so that the originating node can correlate with the application that sent the
packet.

3ffe:b00:0:2::1

3ffe:b00:0:1::3

C

D

3
2

1

A

B

3ffe:b00:0:1::1
default router for A

3ffe:b00:0:1::2

Figure 9.3 ICMP Redirect Example
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Table 9.2 ICMP redirect process

From → To Type of
packet

Source and destination address Description
and content

1 A → D Data packet Link Src: link-layer address of the source (A)
Link Dst: link-layer address of the default router (B)
IP Src: address of A (3ffe:b00:0:1::1)
IP Dst: address of D (3ffe:b00:0:2::1)

Data packet
sent to D from
A, through B,
the default
router for A.

2 B → A ICMPv6
Type = 137
Hop limit
= 255

Link Src: link-layer address of the default router (B)
Link Dst: link-layer address of A
IP Src: link-local address of B (fe80::2)
IP Dst: address of A (3ffe:b00:0:1::1)
An option is used to include the originating packet
(i.e. 1 above) inside the ICMP data part to help the
originating node to correlate the context of the
redirect.

ICMP Redirect
message sent
from B to A,
containing the
link-local
address of C,
the right router
to reach D.

3 B → D Data packet Link Src: link-layer address of the default router (B)
Link Dst: link-layer address of the right router (C)
IP Src: address of A (3ffe:b00:0:1::1)
IP Dst: address of D (3ffe:b00:0:2::1)

Data packet
sent to D from
B, through C.

4 A → D 2nd data
packet

Link Src: link-layer address of the source (A)
Link Dst: link-layer address of the right router (C)
IP Src: address of A (3ffe:b00:0:1::1)
IP Dst: address of D (3ffe:b00:0:2::1)

Data packet
sent to D from
A, through C.

9.4 Static Routes

Static routes are used to force routing of some prefixes through specific routers. The default
route (::/0) is an example of a static route. Static routes have higher preference in a routing
table over learned routes from routing protocols. A static route contains the prefix to be
routed and the IP address of the router, called the next hop, responsible for routing any
packet with a destination inside the given prefix range. Static routing has not changed in
IPv6. However, a link-local address should be used as the next hop address.

Differences between IPv4 and IPv6 for static routes:

No difference except that the next hop address should be link-local.

9.5 RIP

RIP (Routing Information Protocol) [RFC1058] is an Interior Gateway Protocol (IGP) for
small to medium size networks as the routing protocol. The enhanced version for IPv6,
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known as RIP next generation (RIPng) [RFC2080, RFC2081], is based on RIP version 2
[RFC1723] and inherits the same generic characteristics:

• Bellman-Ford distance-vector algorithm;
• 30 seconds between updates;
• 180 seconds expiration time for a route not heard;
• fixed metrics;
• network diameter of 15 hops;
• split horizon and poison reverse;
• route tags.

9.5.1 Changes

Many incremental changes for better reliability and for using IPv6 features were introduced
in the protocol. Table 9.3 lists the changes to RIP for IPv6.

The link-local source address, the link-scope multicast destination address, the next hop
and the hop limit are all link scoped characteristics, which gives additional security and
reliability towards any remote rogue router threat.

Table 9.3 RIPng changes and new features

Feature Description

Advertised Routes RIPng advertises IPv6 routes composed of IPv6 prefixes with prefix
length and metric.

Next Hop The Next-Hop address is the IPv6 link-local address of the router
interface advertising the prefix.

IP Protocol Transport IPv6 is used to carry RIP datagrams, using UDP as transport protocol.
Source IPv6 Address The RIP update IPv6 source address is the link-local address of the

originating router interface (except when replying to a unicast Request
Message from a port other than the RIPng port, when, in this case, the
source address is a global valid address; see [RFC2080]).

Destination IPv6 Address The RIP update destination address is FF02::9, the all-RIP-routers
multicast address. Only RIPng routers listen to this multicast address.
It is a link-local scope multicast address, which is not forwarded to
other links.

Hop Limit = 255 RIP updates have the IPv6 packet Hop Limit set to 255. This enables
the listeners to verify if the updates are coming from external rogue
routers, as described in Section 7.3.

Port Number = 521 The UDP port is 521, instead of 520 for RIPv1 and 2.
RIPng version = 1 RIPng version number in the RIP packet is 1, which means the first

version of RIPng. Since a different transport port is used, the listeners
can differentiate RIPv1, RIPv2 and RIPng packets.

Routing Table The IPv6 routing table is separate from the IPv4 routing table of
RIPv1 or 2. The default route is advertised as ::/0.

Authentication RIPng authentication relies on the underlying IPsec security. Any RIP
specific authentication is removed.
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Since the routing tables are different for IPv4 routes and IPv6 routes, RIPng deployment
is using the ‘ships in the night’ concept where the routing topologies of IPv4 and IPv6 do
not know each other.

Unless otherwise stated, this book uses RIP and RIPng interchangeably to mean RIP for
IPv6.

9.6 OSPF

Open Shortest Path First (OSPF) [RFC2328], as version 2, is an IPv4-only IGP. OSPFv3
[RFC2740] is made network protocol independent, similar to IS-IS, so that it can now include
IPv6 routes. OSPFv3 shares the same fundamentals as OSPFv2:

• flooding;
• designated router election;
• area support;
• Dijkstra shortest path first calculations;
• on-demand circuit support;
• Stub and NSSA areas;
• multicast extensions (MOSPF).

9.6.1 Changes

Many external changes for better reliability and for using IPv6 features were introduced in
the protocol. Table 9.4 lists the major changes made in OSPFv3.

9.6.2 Router ID

In order to make OSPF network protocol independent, the Router and Network Link State
Advertisements (LSA) do not have any address. They only carry topology information
through the use of the router ID, identifying each router. Since the router ID in OSPFv3 is
still a 32 bit value, the implementations either choose one of the IPv4 addresses configured
in the router to be the router ID or the router ID will have to be manually configured. Many
implementations continue to use the IPv4 syntax for the router ID, even if the semantic is
now more generalized to a router ID.

9.6.3 Link-State Database

The link-state database is built with routerIDs and so the topology of the network must be the
same for all network protocols. One cannot start a small IPv6 network with tunnels overlaying
the IPv4 network and use OSPFv3 to route both protocols, because the two IP networks have
different topologies. Use OSPFv2 for IPv4 routing and OSPFv3 for IPv6 routing, which
results in two different link-state databases, known as ‘ships in the night’, which doubles
the memory and the SPF calculations. However, having two different link-state databases
enables an incremental deployment of IPv6 with a fully-deployed IPv4 network.
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Table 9.4 OSPFv3 changes and new features

Feature Description

Router and network LSAs These do not have addressing semantics and only carry
topology information.

New Intra-Area-Prefix-LSA This carries IPv6 addresses and prefixes.
Addresses in LSA These are described as prefix with a prefix length. The default

route is ::/0.
Router identification Router ID is still a 32 bit value, but defines the router,

whatever IPv4 or IPv6 address it has. Used in DR, BDR,
LSAs, database.

Flooding scopes Link, area or AS.
Next Hop The Next-Hop address is the IPv6 link-local address of the

router interface advertising the prefix.
New Link-local LSA This carries the link-local address of the router interface, the

prefixes of the link and options.
Runs on per-link basis, instead

of a per IP subnet basis
An OSPF interface now connects to a link instead of an IP
subnet. Multiple instances on a single link, using an Instance
ID in the OSPF packet header, is supported.

Uses IPv6 for transport of
OSPF packets

Next Header = 89 to identify an OSPFv3 IPv6 packet.

Source IPv6 Address of OSPF
packets

The OSPF packet source address is the link-local address of
the originating router interface.

Destination IPv6 address of
OSPF packets

All OSPF Routers send Hello packets and listen to FF02::5,
the all-ospf-routers link scope multicast address. Designated
Router and Backup DR send and listen to FF02::6, the
alldrouters link scope multicast address.

Hop Limit = 1 of OSPF packets 1 means link-local scope. However, as with RIPng and
Neighbor Discovery, it would have been safer to use a Hop
Limit of 255 (see Section 7.3).

OSPF version = 3 Previous versions are equal to 1 or 2.
Authentication is done with IPsec All OSPF internal authentication data are removed. It now

relies on underlying IPsec security to protect the integrity and
to provide authentication.

9.7 IS-IS

Intermediate System to Intermediate System (IS-IS) is the OSI IGP protocol. Designed as a
network protocol independent routing protocol from the beginning, IS-IS was easily adapted
for IPv6 by adding a few type-length-values [Hopps, 2003]. No protocol version has to be
incremented to support the new network protocol because there was no change to the IS-IS
protocol itself.

9.7.1 Changes

Table 9.5 lists the changes to support IPv6 in IS-IS.
Since IS-IS uses layer 2 encapsulation, no IP address in packets is needed.
IS-IS for IPv6 is considered to be easier to implement compared to OSPFv3.
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Table 9.5 Changes to IS-IS to support IPv6

Feature Description

New IPv6 Reachability
TLV �type = 236�

This is an IPv6 route advertisement, containing the IPv6 prefix, the
prefix-length, the metric and additional information (advertisement
from a higher level and from an external routing protocol).

New IPv6 Interface
Address TLV �type = 232�

For Hello packets, it is the link-local address of the router
interface. For LSP packets, it is the global address of the router.

IPv6 NLPID �= 142� It is sent by the router to announce the support of IPv6 routing in
IS-IS.

9.7.2 Multi-topology

The use of an integrated link-state database in IS-IS mandates the identical topology of all
network protocols it manages. The IPv4 network and the IPv6 network topologies must be
identical to an integrated IS-IS.

For environments where IPv6 is deployed incrementally or differently to the IPv4 network
topology, integrated IS-IS with IPv4 and IPv6 does not work. Some router vendors have
implemented IS-IS with different link-state databases to enable the ‘ships in the night’
concept, which enables different network topologies for each IP protocol.

9.8 BGP

The Border Gateway Protocol (BGP) [RFC1771] is used to exchange routes between different
administrative domains, called autonomous systems (AS). When used between providers to
exchange routes, it is called external BGP (eBGP). When used within an administrative
domain, it is called internal BGP (iBGP).

The Multiprotocol BGP (MBGP) [RFC2858] is the enhanced version of BGP to support
multiple network protocols or address families. For example, MBGP carries VPN and
multicast routes as well as IPv4 routes. A new address family in MBGP is defined for IPv6
[RFC2545]; this specific IPv6 version was historically named BGP4+.

9.8.1 Changes

Table 9.6 lists the changes to MBGP for IPv6.

Table 9.6 MBGP changes for IPv6

Feature Description

Next Hop An IPv6 address. Global, site and link-scoped are possible.
Network Layer Reachability

Information (NLRI)
The announced route. It is expressed as an IPv6 prefix with
prefix length.

Address Family A specific address family is used to identify IPv6 routes.
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Most IPv6 router vendors support IPv6 MBGP. It has been used on the IPv6 test backbone,
the 6bone, since 1996.

9.8.2 Router ID

BGP uses the Router ID 32 bits field to identify routers between peers. One of the IPv4
addresses of the BGP router is typically used for this Router ID. However, if the BGP
router is configured only for IPv6, then a 32 bits value has to be configured manually. This
value must be unique among the peers of the router and identifies uniquely the router. Many
implementations keep the IPv4 syntax to enter the value, even if the semantics are more
generic.

9.8.3 Link-local Addresses for Peering

When routers of multiple AS peer together on a link in an exchange point, a prefix for the
link has to be taken out from some organization address space to configure the addresses of
the routers on the link. This address space is taken from either one of the AS address spaces
or from the exchange point address space. IPv6 does not need to use a specific address space
for the link because link-local addresses are available and can be used for BGP peering
without harm. Using link-local addresses is simpler than trying to find and choose the right
address space from an organization involved in the exchange. Multi-hop BGP, which is build
over multiple links, cannot use link-local addresses.

To avoid the problem of changing the peering configuration of the link-local address when
the hardware needs to be changed, the link-local address can be manually specified. For
example, the fe80::<AS number>:<local ID> addressing structure can be used on a link of
an exchange point, where each peer defines a static link-local address which contains its AS
number and a peer locally defined number, in case of multiple peering routers of the same
AS. Many router vendors support this extension [Manning and Kato, 2001].

9.8.4 Site Scoped Prefixes in Routes

BGP is normally used to exchange global routes between peers. However, the protocol does
not restrict the use of site scoped prefixes, which are, by definition, not global but local to
a site. Those site scoped prefixes must not be announced in the external peering into the
global Internet as discussed in section 23.3.4.

9.9 Tunneling IPv6

In some situations, network managers use tunneling to bypass the normal routing of a
network. For example, some distant site has a specific use policy that is different to the
policy used in the network in between. This tunneling of IPv6 can be achieved over GRE,
IPv4, IPv6, MPLS or others [Conta, Deering, 2002]. Figure 9.4 shows the encapsulation of
IPv6 traffic inside an IPv6 packet.
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Figure 9.5 IPv6 over IPv6 tunnel between two routers

Figure 9.5 shows an example where node A and B are IPv6 nodes and the tunnel is carried
out by the border routers R1 and R2. A sends a packet to B.

The source node A behaves as a normal IPv6 node and has no knowledge of a tunnel in
the path to B. However, R2 has a configured tunnel with R1.

As described in Table 9.7, node A sends the IPv6 datagram on its IPv6 network. The
source address is A’s address (3ffe:ffff:a:1::1) and the destination address is B’s address
(3ffe:ffff:a:3::2). The IPv6 datagram is forwarded to the R2 router which has a route to
the destination network through the tunnel to R1. R2 encapsulates the IPv6 datagram in an
IPv6 datagram with the IPv6 source address being R2’s address (3ffe:b00:f:1::1) and the
destination address being R1’s address (3ffe:b00:f:2::2).

A and B have no clue that the datagram was encapsulated over some parts of the path.
Nested tunnels may occur when cascading tunnels are used in the path, causing multiple

encapsulations. This is not recommended, especially if fragmentation needs to be applied.
Additional considerations regarding MTU and ICMP with tunnels are discussed in

Section 16.2.7. Configuration of IPv6 tunnels can be automated by the use of the Tunnel
Setup Protocol, discussed in Section 16.2.9.
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Table 9.7 IPv6 over IPv6 tunnel between two routers

IPv6 outer addresses IPv6 inner addresses Description

1 None Src = A = 3ffe:b00:a:1::1
Dst = B = 3ffe:b00:a:3::2

Source A makes an IPv6 datagram
for the destination node B.

2 None Src = A = 3ffe:b00:a:1::1
Dst = B = 3ffe:b00:a:3::2

IPv6 datagram travels on the IPv6
network.
Router R2 receives the IPv6
datagram from A.

3 Src = R2 = 3ffe:b00:f:1::1
Dst = R1 = 3ffe:b00:f:2::2

R2 encapsulates the IPv6 datagram
into the payload of the IPv6
datagram. Destination of the IPv6
datagram is the end of the tunnel, R1.

4 Src = R2 = 3ffe:b00:f:1::1
Dst = R1 = 3ffe:b00:f:2::2

IPv6 datagram travels on the IPv6
network.
R1 receives the encapsulated IPv6
datagram.

5 Src = A = 3ffe:b00:a:1::1
Dst = B = 3ffe:b00:a:3::2

R1 removes the IPv6 header and
sends the IPv6 original datagram on
its IPv6 network.
Destination of the IPv6 datagram is B.

6 Src = A = 3ffe:b00:a:1::1
Dst = B = 3ffe:b00:a:3::2

Destination B receives the IPv6
datagram.

9.10 Renumbering Routers

As discussed in Section 5.3, hosts can be autoconfigured and renumbered using the router
advertisements. However, to renumber a full site, routers themselves have to be renumbered,
or more appropriately, reconfigured, because the renumbering of routers must be saved
permanently in non-volatile memory, so the next reboot will have the new addresses.

A router renumbering protocol [RFC2894] is defined using a new ICMP message
(code 138). It uses IPsec for authentication, integrity and has a replay protection scheme.
The protocol can be used to modify the configuration of routers for the following items:

• advertised prefixes on links;
• lifetimes (valid and preferred) of the advertised prefixes;
• flags of the router advertisements (onlink, otherconfig);
• router’s interface addresses.

Reconfiguration messages include a matching prefix and mask, which enables the change
of part of a prefix. For example, when changing provider, a site would change the first 48
bits received from the new provider, but the internal subnet numbers (bits 48 to 64) do not
need to be changed or renumbered. A prefix match of 48 bits is used in this case.

The following list shows the steps needed to use the router renumbering protocol in a
network.

1. Install security keys in each router.
2. Make a security association between routers.
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3. On a network management console or on one of the routers, trigger the reconfiguration
message to the first routers.

4. Routers reconfigure themselves automatically and save their new configuration in non-
volatile memory.

5. Routers send the reconfiguration message to their neighbors, which propagates the router
renumbering. The message is sent to all the router multicast addresses so all routers
receive the reconfiguration message.

A test facility is available in the protocol where the actual reconfiguration is not done
on the routers receiving the router renumbering requests but, rather, a report is sent back to
the sending router with details on what would have been done if the reconfiguration were
executed.

In a large network where the number of routers is unknown, it might be a challenge
to verify if the renumbering happens effectively on all routers, as stated by the Internet
Engineering Steering Group (IESG) in their note written in the protocol RFC [RFC2894].

A good use of this protocol is when a site starts deploying IPv6 locally using the site
scoped addresses and later on connects to an IPv6 provider and receives a prefix for the site.
The router renumbering protocol can be used to add this new prefix to the configurations
of all routers, enabling the use of this new prefix on all hosts on the network that use
autoconfiguration. The site scoped addressing might be kept or removed in a subsequent
router renumbering action.

Network managers are generally opposed to this kind of protocol, at least with their first
impression. This might be your initial view too. In fact, it is scary to have the reconfiguration
of routers automated that much. However, it might be useful not only for renumbering but
also for changing some router advertisement fields such as the lifetimes on a whole site
basis. Few implementations of this protocol are available at the time of writing.

9.11 Internet Routing

An important motivation for the design of IPv6 was to reduce the global routing table size.
The aggregation of IGP and EGP IPv6 routes should be better by design, but policies and
network engineering decisions over the lifetime of IPv6 might show differently.

In the early 1990s, the global routing table size was seen as a major obstacle to the growth
of the Internet, given that core routers might not have the horsepower and memory to handle
the global routing table. Recent studies [RFC3221] have shown that the most important
obstacle is not the size of the global routing table but its relative instability, caused by the
visibility of the site routes in the global routing table. This visibility of site prefixes is used
for traffic engineering and for site multihoming, which are two useful features for large
networks.

To achieve site multihoming in IPv4, the site prefix is advertised by all the providers of
the site. Figure 9.6 shows a site with the 192.0.2.0/24 prefix announced by its two providers
to the Internet core.

Table 9.8 lists the entries in the global routing table for this site example.
In the global routing table, the site prefix has two specific entries, one for each provider.

This enables the site to be fully redundant if one provider is not reachable, and also permits
some load balancing. The example in Figure 9.6 uses portable addresses also called provider
independent (PI) addresses, where the site owns the address space.
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Figure 9.6 Multihoming with provider independent address space

Table 9.8 Route entries in
the IPv4 global routing table

Route entry Origin

192.0.2.0/24 Provider A
192.0.2.0/24 Provider B
206.123.0.0/16 Provider B
207.30.0.0/16 Provider A

If the organization does not own the address space, but instead obtained the address
space from one of its providers, then the site specific route is announced by both providers.
Figure 9.7 shows an example where the site address space (206.123.31.0/24) is from provider
B’s address space (206.123.0.0/16). Provider A has to announce the 206.123.31.0/24 site
address space. If provider B does not announce the specific route (206.123.31.0/24), then
the longest match rule of routing results in all incoming traffic to the site going through
provider A, which announces a longer prefix (/24) than provider B (/16) for the site address
space. Provider B has to announce the site address space (206.123.31.0/24) as well as the
larger address space (206.123.0.0/16).

Table 9.9 lists the entries in the global routing table for this site example.
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Figure 9.7 Multihoming with provider assigned addresses

Table 9.9 Route entries in the
IPv4 global routing table

Route entry Origin

206.123.31.0/24 Provider A
206.123.31.0/24 Provider B
206.123.0.0/16 Provider B
207.30.0.0/16 Provider A

From the Internet core aggregation point of view, these two examples show that mul-
tihoming with or without provider independent address space causes specific routes to be
announced in the global routing table.

Any slight instability of the site reachability generates route withdrawals and insertions,
causing many exchanges between the BGP routers of the Internet. Any multihoming solution
that exposes the site prefixes in the global routing table creates this instability.

Aggregation is useful to achieve the smallest global routing table as well as for stability
of the whole Internet. However, current traffic engineering and multihoming techniques in
IPv4 break aggregation: using the same techniques in IPv6 also breaks aggregation.
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9.12 Multihoming

A multihomed network is a network connected to multiple providers. Organizations use this
technique for the following reasons:

• Redundancy: if a provider or the link to the provider or the exit router to the provider is
down, then the other provider(s) is used.

• Load balancing: to load balance the providers links.
• Local exit point: to provide multiple exit points with local connectivity for a large network

over multiple locations, which usually costs less than having one exit point that aggregates
the Internet traffic through private links until it reach the exit router.

• Less transit costs: peering with Tier-2 providers is usually cost-effective because no transit
costs are involved.

• Better response time: by peering with other networks nearer to the target customer base.
• Provider-independent addressing which makes the organization independent of providers.
• Policies: internal or external policies.

Many techniques are currently available for IPv6 multihoming, including:

• provider independent address space;
• multiple prefixes;
• cross-tunnels at site exit routers.

Among the other techniques being discussed in the IPv6 community is propagation using
router renumbering and advertisements.

This section will describe the above techniques.

9.12.1 Provider Independent Address Space

As in IPv4, there is no technical barrier to using provider independent address space for
IPv6 multihoming. In this case, the address space registries would give address space to
organizations that are multihomed. Figure 9.8 shows an example where the site has the
3ffe:b00:1::/48 provider independent address space.

The site is connected to provider A which has the 2001:410::/32 address space and to
provider B which has the 2001:5c0::/32 address space. Both receive the 3ffe:b00:1::/48
announcement from the site and redistribute and announce that route to the Internet core.

This solution has the same drawbacks as in IPv4 multihoming with provider independent
address space, such as multiple entries in the routing table for each site. This means instability,
route flapping and high requirements for core router vendors to implement large route
databases in routers. If all sites are multihomed, then at least four entries exist in the global
routing table for each site. Billions of sites will be a challenge, if ever possible.

A recent proposal [Roberts, 2005] is to provide IPv6 provider independent address space
only to enterprises which already have an autonomous system (AS) number. Since the only
reason for an enterprise to get an AS number is to be multihomed, which usually requires sig-
nificant costly infrastructure, then those enterprises could apply to get a provider independent
address space directly from the registries. Since the number of enterprises in this situation
is low compared to the total number of enterprises, this proposal is worth considering.
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Figure 9.8 Multihoming example with PI IPv6 addresses

Currently, the policy for address allocation [RIPE267] implemented by address registries
does not permit the allocation of IPv6 provider independent address space, which makes
this solution theoretical only. However, no technical barrier prevents the deployment of this
solution if required in the future. The address allocation policy is discussed in Section 23.2.

9.12.2 Multiple Prefixes

The IPv6 basic solution to the multihoming problem is to use multiple prefixes inside a
site. Each provider gives a /48 to the site. The site propagates each address space inside
the network so that each host has multiple addresses, one per provider. Figure 9.9 shows
an example with two providers (A and B) and one site consisting of a border router R1,
a LAN and the node N1. Provider A has the 3ffe:b00::/32 address space from which it
assigns 3ffe:b00:1::/48 to the site. Provider B has the 3ffe:c00::/32 address space from which
it assigns 3ffe:c00:2::/48 to the site. N1 has two addresses on the LAN: 3ffe:b00:1::2 and
3ffe:c00:2::2.

From the Internet core perspective, aggregation is intact so the site is not seen in the core.
On the host side, the node N1 has to choose the right source address. The address selection
mechanism, discussed in Section 8.6, is used, but has limitations in the way it always chooses
the best source address. Moreover, when providers and organization network managers are
filtering based on source or destination addresses in their network, the multiple prefix gives
much more filter management to the extent that operators might not deploy the multiple
prefixes solution only for that reason.
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Figure 9.9 Multiple prefix multihoming example

9.12.3 Cross-tunnels at Site Exit Routers

When multiple routers and links are used to connect the providers to the site, cross-tunnels
[RFC3178] can be used to keep the aggregation of address space at the core while having
a link failure mechanism at the site level. Figure 9.10 shows an example of a site that has
two providers (A and B), connected to R1 and R2 respectively. Each provider assigns an
address space to the site: 3ffe:b00:1::/48 and 2001:5c0:1::/48. The assigned address space
(for example, 3ffe:b00:1::/48) is announced to provider (A) by the site on the primary link
(R1 to RA). A backup link, usually done by a tunnel, is established between the provider
router (RA) and the other site router (R2), where the assigned address space (3ffe:b00:1::/48)
is announced with a lower preference. With this preference change, the primary link is
always used unless it is not working. In this latter case, the backup link is used.

This solution works only for short distance links, since the two backup link costs would
be prohibitive on long-haul. Moreover, since multiple prefixes are used in the site, it exhibits
the same issues as the multiple prefixes solution.

9.12.4 Propagation using Router Renumbering and Advertisements

Router advertisements, as discussed in Section 5.2.2.1, are used to send prefixes to nodes.
Router Renumbering, as discussed in Section 9.10, is used to reconfigure the routers. If a site
is multihomed and received multiple prefixes from its providers, then the two mechanisms
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Figure 9.10 Cross-tunnels IPv6 multihoming example

can be used for a better multihoming solution. When a provider link goes down, the border
router starts a router renumbering inside the network to withdraw the prefix of that provider.
The router advertisements are updated based on the router renumbering changes, which
makes the hosts withdraw the faulty prefix.

Figure 9.11 shows an example of a site with the 3ffe:b00:1::/48 prefix allocated from
provider A 3ffe:b00::/32 address space and the 3ffe:c00:2::/48 prefix allocated from provider
B 3ffe:c00::/32 address space. Routers R1 and R2 are configured for the router renumbering
protocol and advertise the two prefixes on LAN1 and LAN2. Nodes N1 and N2 each have
two addresses from the two prefixes.

When the link to provider B becomes down as shown in Figure 9.12, R1 withdraws the
3ffe:c00:2::/48 prefix in the router renumbering and router advertisements. R2 receives the
router renumbering message and consequently withdraws the 3ffe:c00:2::/48 in its router
advertisements. N1 and N2 withdraw the prefix and now have only one prefix configured.

This solution does not break the aggregation and provides link failure recovery. Effectively,
it renumbers the whole network when a provider link is down. However, if the provider
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Figure 9.11 Multihoming with router renumbering

link is unstable, the convergence of the propagation can make the network unreliable. As
discussed in Section 9.10, the router renumbering protocol in large networks is still subject
to debate.

9.12.5 Multihoming Work Progress

IPv6 multihoming can use the IPv4 multihoming techniques. However, the current issues
of large routing table and instability are not resolved, and will be more important as the
Internet continues to grow. IPv6 is an opportunity to make multihoming more efficient
[RFC3582]. Some IPv6-only techniques such as multiple prefixes are available today, others
are being discussed. Please consult the book web site (http://www.ipv6book.ca) for the latest
developments.
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Figure 9.12 Multihomed Link failure with RR and RA

9.13 Summary

Routing has not changed that much in IPv6: route redirect works similar to IPv4 although
source routing is done differently by using the routing extension header. The same routing
protocol mechanisms are used but upgraded versions of the protocols are necessary. Router
renumbering is defined to reconfigure routers in the event of prefix changes. Multihoming is
an important topic in the next phases of the Internet and IPv6 has many solutions in the works.
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10
Configuring Routing

This chapter presents the routing configuration of FreeBSD, Linux, Solaris and Windows,
acting as hosts and routers, and Cisco, Hexago, Juniper and Zebra, acting as routers. It
includes the most important commands and configuration statements while not trying to
replicate the vendor documentation, nor starting from zero to configure routers. The goal is
to provide templates and basic configurations to bootstrap the learning of these vendors OS
and to act as a reference for occasional uses. The reader is expected to have some knowledge
of the respective vendor’s OS.

For each vendor, sections on forwarding, static routes, route redirect, Routing Information
Protocol(RIP), Open Shortest Path First (OSPF), Intermediate System to Intermediate System
(IS-IS), Border Gateway Protocol (BGP) and troubleshooting are presented.

If configuring routers is not your primary interest, you can skip this chapter.

10.1 Considerations on Using Autoconfiguration for Router
Interfaces

Router interface addresses are often referenced within routing protocols and router config-
urations. Since interface autoconfiguration is based on the MAC address, the EUI-64 made
addresses are dependent on the hardware interface. A replacement of a faulty hardware
interface generates a new autoconfigured address. To avoid reconfiguration, one should
avoid interface autoconfiguration on routers and instead configure a static address on router
interfaces. This advice also applies to server interface addresses.

Advice on how to configure IPv6 addresses on router interfaces:

Do not use autoconfiguration for router interfaces: configure static addresses instead.

Migrating to IPv6: A Practical Guide to Implementing IPv6 in Mobile and Fixed Networks Marc Blanchet
© 2006 John Wiley & Sons, Ltd
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10.2 FreeBSD

This section discusses routing on FreeBSD, as a host and as a router.

10.2.1 Forwarding

To configure FreeBSD to forward packets between interfaces, set the ‘ipv6_gateway_
enable’ variable to ‘yes’ in the ‘/etc/rc.conf’ file.

# cat /etc/rc.conf
ipv6_gateway_enable="yes"

At boot time, this variable sets the kernel variable ‘net.inet6.ip6.forwarding’ to
1. To verify this variable, use the ‘sysctl’ command, as shown below.

# sysctl net.inet6.ip6.forwarding
net.inet6.ip6.forwarding: 1

To set the variable, use ‘sysctl net.inet6.ip6.forwarding=1’.
Setting FreeBSD as a router disables listening of router advertisements, because a router

should not listen to router advertisements of other routers.
Forwarding should be set when multiple interfaces are used and when traffic is forwarded

between these interfaces. This applies to logical and physical interfaces. For example, a
host with one physical interface and one tunnel interface acting as a router should set the
forwarding mode.

10.2.2 Static Routes

To install a route, use the ‘route add’ command. The following installs an IPv6 default
route targeted to fe80::2.

# route add -inet6 default fe80::2

To permanently install a static default route, set the ‘ipv6_defaultrouter’ variable
in the ‘/etc/rc.conf’ file to the address of the router, as shown below.

# cat /etc/rc.conf
ipv6_defaultrouter="fe80::2"

At boot time, the rc script executes the following command, based on the content of the
previous variable.

# route add -inet6 default fe80::2

A FreeBSD host using the autoconfiguration process should receive a default route in the
router advertisements, which means this static default route setting is not necessary in
autoconfiguration mode.
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A static route is set using the ‘ipv6_static_routes’ and ‘ipv6_route’ variables
in ‘/etc/rc.conf’. The example below shows how to set the 3ffe:b00:1::/48 route to
fe80::2.

# cat /etc/rc.conf
ipv6_static_routes="1"
ipv6_route_1="3ffe:b00:1:: -prefixlen 48 fe80::2"

The ‘1’ string could be any string defined in the ‘ipv6_static_routes’ variable and
referenced in the name of the ‘ipv6_route’ variable that defines the specific route. The
syntax of the ‘ipv6_route’ variable is the ‘route’ command syntax without the ‘add’
argument. At boot time, these variables execute the following route command.

# route add -inet6 3ffe:b00:1:: -prefixlen 48 fe80::2

Some of the IPv6 prefixes are not suitable for routing. For example, the internal IPv4-
mapped address, such as ::ffff:0.0.0.0/96, should not appear on the wire. To ensure this
behavior, the ‘-reject’ argument is used in the route command to send an ICMP
unreachable message for this route instead of installing it in the kernel. At boot time, the
‘/etc/rc.network6’ script executes the following command to reject these routes.

# route add -inet6 ::ffff:0.0.0.0 -prefixlen 96 ::1 -reject

10.2.3 Route Redirect

The ‘net.inet6.ip6.redirect’ kernel variable is used to control if FreeBSD accepts
route redirects ICMP messages. It should be set to 1 in most cases and is the default.

# sysctl net.inet6.ip6.redirect
net.inet6.ip6.redirect: 1

10.2.4 RIP

The RIPv6 routing process is implemented in the ‘route6d’ daemon. It is started at boot
time by setting the ‘ipv6_router_enable’ to yes in the ‘/etc/rc.conf’ file.

# cat /etc/rc.conf
ipv6_router_enable="yes"

At boot time, this variable executes the ‘route6d’ command with the
‘ipv6_router_flags’ variable used to set options to the ‘route6d’ process.

Route advertisements of site scoped prefixes are disabled by default. This is a precaution
of the stack developers because site scoped prefixes should not be advertised outside the
site. For all internal routers, the variable ‘ipv6_router_flags’ should be set to ‘-l’ to
advertise site scoped prefixes, as shown below.

# cat /etc/rc.conf
ipv6_router_flags="-l"
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10.2.5 Troubleshooting

To troubleshoot routes, use the ‘netstat -r’ command. To restrict the output to IPv6
routes, use the ‘-f inet6’ argument.

# netstat -f inet6 -rn

The ‘traceroute6’ command is used to identify the path taken from the source to the
destination. It is the IPv6 version of traceroute.

# traceroute6 3ffe:b00:1:1::1

10.3 Linux

This section discusses routing on Linux, as a host and as a router. Some features discussed
below are configured as variables in the kernel using either the ‘sysctl’ command to
set the variable, or putting the value in the corresponding file in the proc filesystem. For
example, to enable the IPv6 forwarding, use either

# sysctl -w net.ipv6.conf.all.forwarding=1

or

# echo "1" > /proc/sys/net/ipv6/conf/all/forwarding

10.3.1 Forwarding

To configure Linux to forward packets between interfaces, set the
‘net.ipv6.conf.all.forwarding’ variable to ‘1’ as shown below.

# sysctl -w net.ipv6.conf.all.forwarding=1

10.3.2 Static Routes

To add a static route, use the ‘route add’ command. The following example installs the
3ffe:b00:1::/48 static route pointing to fe80::2.

#route -A inet6 add 3ffe:b00:1::/48 gw fe80::2

To delete a route, use the ‘route del’ command. The keyword ‘gw’ used in the add
command is replaced by ‘via’. The following example deletes the 3ffe:b00:1::/48 route.

#route -A inet6 del 3ffe:b00:1::/48 via fe80::2

The current Linux kernel does not support the IPv6 default route (::/0). To make a default
route, use the current allocated address space. The equivalent of the default route is the
2000:/3 route, since it is the defined unicast address range in the addressing architecture (see
Section 4.3.1).
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#route -A inet6 add 2000::/3 gw fe80::2

If using unique-local addressing, add also a route for fc00::/16 or fd00::/16.

10.3.3 Route Redirect

By default, route redirects are accepted when Linux is not forwarding and refused
when Linux is forwarding. To set the acceptance of route redirects, set the sysctl
‘net.ipv6.conf.all.accept_redirects’ variable to ‘1’, as shown below.

# sysctl -w net.ipv6.conf.all.accept_redirects=1

10.3.4 Troubleshooting

To troubleshoot IPv6 routes, use the ‘route -A inet6’ command without any additional
argument.

# route -A inet6

The IPv6 routes can also be seen using the ‘netstat’ command and by looking in the
‘/proc’ filesystem, as shown below.

# more /proc/net/ipv6_route

The ‘traceroute6’ command is used to identify the path taken from the source to the
destination. It is the IPv6 version of traceroute.

# traceroute6 3ffe:b00:1:1::1

10.4 Solaris

This section discusses routing on Solaris, as a host.

10.4.1 Static Routes

To install a route, use the ‘route add’ command. The following installs an IPv6 default
route targeted to fe80::2.

# route add -inet6 default fe80::2

10.4.2 Troubleshooting

To troubleshoot, use the ‘netstat’ command. To restrict the output to IPv6 routes, use
the ‘-f inet6’ and ‘-r’ arguments.
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# netstat -f inet6 -rn

The ‘traceroute’ command is used to identify the path taken from the source to the
destination.

# traceroute 3ffe:b00:1:1::1

When the argument is a domain name, use the ‘-A inet6’ option to force IPv6.

10.5 Windows

This section discusses routing on Windows, as a host and as a router. All statements are
under the ‘netsh interface ipv6’ command.

10.5.1 Forwarding

By default, IPv6 forwarding in Windows is off. To enable IPv6 forwarding, use the ‘set
forwarding’ statement, as shown below.

C> netsh interface ipv6 set interface "Local Area Connection"
forwarding=enabled

This command has to be done on each interface by replacing the ‘Local Area Connection’
with the appropriate interface name.

10.5.2 Static Routes

To add a static route, use the ‘add route’ statement and specify the route prefix, the
interface and the next hop. The following example installs a static default route (::/0) on the
first LAN interface (‘Local Area Connection’), targeted to fe80::1.

C> netsh interface ipv6 add route ::/0 "Local Area Connection"
nexthop=fe80::1 publish=yes

To delete a route, use the ‘delete route’ statement.

C> netsh interface ipv6 delete route ::/0 "Local Area Connection"

10.5.3 Troubleshooting

To list the IPv6 routes, use the ‘show routes’ command, as shown below.

C> netsh interface ipv6 show routes

To traceroute an IPv6 path, use the ‘tracert’ command with a destination IPv6 address,
as shown below.
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C> tracert 3ffe:b00:1:1::1

When the argument is a domain name, use the ‘−6’ option to force IPv6.
To display latency and packet loss of a path, use the ‘pathping’ command, as shown

below.

C> pathping 3ffe:b00:1:1::1

When the argument is a domain name, use the ‘−6’ option to force IPv6.

10.6 Cisco

This section describes the routing configuration of Cisco routers. In each example,
‘configure terminal’ or ‘enable’ is shown to distinguish in which context the com-
mands are used. All levels are shown using indentation. To save redundant explanations,
only changes are shown. For example, the command ‘ipv6 unicast-routing’ is only
shown once, even if it should be included in all IPv6 Cisco configuration.

Most IPv6 commands are similar to the IPv4 commands, by replacing the ‘ip’ keyword
with ‘ipv6’.

10.6.1 IPv6 Forwarding

If IPv6 forwarding is not explicitly configured, a Cisco IOS router behaves as an IPv6
host and does not forward IPv6 packets. To configure IPv6 forwarding, use the ‘ipv6
unicast-routing’ command.

configure terminal
ipv6 unicast-routing

10.6.2 Cisco Express Forwarding

To enable IPv6 Cisco Express Forwarding (CEF) use the ‘ipv6 cef’ statement, but IPv4
CEF must be enabled first using the ‘ip cef’ statement. IPv6 packets with global or site
scoped source and destination addresses are CEF switched. IPv6 packets with link-local
addresses are not CEF switched.

The following example shows the commands to enable IPv4 and IPv6 CEF.

configure terminal
ip cef
ipv6 cef

The following example shows the commands to enable IPv4 and IPv6 distributed CEF.

configure terminal
ip cef distributed
ipv6 cef distributed



180 Migrating to IPv6

10.6.3 Prefix Lists

Prefix lists are used to filter routes in routing protocols. The ‘ipv6 prefix-list’ com-
mand is used with a name to define a prefix list. Actions such as deny or permit follow the
statement and matching rules are applied.

The following example defines a prefix list named NO6TO4 with the matching rule to
deny the advertisement of 6to4 (see Section 16.2.5) routes in RIP. 6to4 routes are defined
as 2002::/16 or greater than 16.

configure terminal
ipv6 prefix-list NO6TO4 deny 2002::/16 ge 16
ipv6 router rip R1
distribute-list prefix-list no6to4 in Ethernet 0

10.6.4 Static Routes

IPv6 static routes are configured using the ‘ipv6 route’ command. The following example
installs the 3ffe:b00:0:1::/64 static route targeted to the fe80::2 router.

configure terminal
ipv6 route 3ffe:b00:0:1::/64 fe80::2

This other example installs a route pointing to the first Ethernet interface.

configure terminal
ipv6 route 3ffe:b00:0:1::/64 ethernet 0

Static routes are listed using the ‘show ipv6 route static’ command.

enable
show ipv6 route static

10.6.5 Route Redirect

By default, route redirect is enabled on Cisco IOS. The ‘no ipv6 redirects’ command
disables it.

configure terminal
no ipv6 redirects

10.6.6 RIP

RIP for IPv6 is enabled with the ‘ipv6 router rip’ command. RIP processes are defined
with a unique name. The RIP advertisements occur when the process is attached to an
interface, using the ‘ipv6 rip enable’ command under the interface mode.

The following example configures RIP for IPv6 with the process name R1. It is enabled
on the first Ethernet interface.
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configure terminal
ipv6 router rip R1
interface ethernet 0
ipv6 rip R1 enable

To inject a default route into RIP advertisements, causing this router to be seen as a default
router, use the ‘ipv6 rip default-information originate’ statement under the
interface mode.

configure terminal
interface ethernet 0
ipv6 rip R1 default-information originate

To redistribute static routes in RIP advertisements, use the ‘redistribute static’
statement under the ‘ipv6 router rip’ mode.

configure terminal
ipv6 router rip R1
redistribute static

RIP information is shown by the ‘show ipv6 rip’ command in enable mode. Details
about the routing database are listed with the ‘database’ argument.

enable
show ipv6 rip

To debug RIP, use the ‘debug ipv6 rip’ command in enable mode.

enable
debug ipv6 rip

10.6.7 OSPF

OSPFv3 commands are similar to their OSPF IPv4 counterparts. OSPFv3 is enabled on a
per interface basis, instead of a network command as in OSFPv2.

To enable the OSPF routing daemon, use the ‘ipv6 router ospf’ statement. This
enters a sub-mode for additional OSPF configuration statements. To start advertising OSPF
on an interface, use the ‘ipv6 ospf’ in the interface mode.

The following example configures OSPF for IPv6 applied to the first Ethernet interface.

configure terminal
ipv6 router ospf
interface ethernet 0
ipv6 ospf

To redistribute BGP routes in OSPF, use the ‘redistribute bgp’ command with the
AS number of the BGP process, as shown below.
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configure terminal
router bgp 65001
ipv6 router ospf
redistribute bgp 65001

OSPF information is shown by the ‘show ipv6 ospf’ command in enable mode.

enable
show ipv6 ospf

To debug OSPF, use the ‘debug ipv6 ospf’ command in enable mode.

enable
debug ipv6 ospf

To reinitialize the SPF calculations, use the ‘clear ipv6 ospf force-spf’ command
in enable mode.

enable
clear ipv6 ospf force-spf

10.6.8 IS-IS

Different to OSPF and RIP, IS-IS carries IPv4 and IPv6 routes in the same protocol and
process, so very few commands are added for IPv6.

The ‘address-family ipv6’ statement is used to enable IPv6 in the IS-IS routing
engine. The ‘ipv6 router isis’ statement is used under the interface mode to enable
IS-IS on that interface. The following example shows the IS-IS process named AREA1 with
the IPv6 address family and assigned to the first Ethernet interface.

configure terminal
router isis AREA1
net 49.001.0000.0000.000c.00
address-family ipv6

interface Ethernet0
ipv6 router isis AREA1

To redistribute BGP routes in IS-IS, use the ‘redistribute bgp’ statement under the
‘address-family ipv6’ mode, as shown below.

configure terminal
router isis AREA1
address-family ipv6
redistribute bgp 65000

To inject a default route in the IS-IS advertisements, causing this router to adver-
tise as a default router, use the ‘default-information originate’ under the
‘address-family ipv6’ mode.
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configure terminal
router isis AREA1
address-family ipv6
default-information originate

The default behavior of IS-IS is to check adjacencies for the same set of protocols. When
the IPv6 IS-IS topology is not identical to the IPv4 IS-IS topology (see Section 9.7.2), the
adjacency check fails. This happens when some neighbors have IPv4, others have IPv4 and
IPv6 and others might have IPv6 only. All routers within an area must support the same set
of IP protocols.

To remove this adjacency check to enable multi-topology, use the ‘no
adjacency-check’ under the ‘address-family ipv6’ mode, as shown below.

configure terminal
router isis AREA1
address-family ipv6
no adjacency-check

IS-IS information is shown by the ‘show isis’ command in enable mode.

enable
show isis AREA1

10.6.9 BGP

To enable the BGP routing daemon, use the ‘router bgp’ statement followed by the AS
number. This enters a sub-mode for additional BGP configuration statements.

BGP configuration is done in two parts: establishing the peering and exchanging
routes. The peering is established with the ‘neighbor remote-as’ statement. The IPv6
route exchange is activated under the ‘address-family ipv6’ statement using the
‘neighbor activate’ statement.

The following example configures a BGP for IPv6 routing daemon with AS 65001,
identified by the 192.0.2.1 router-id (see Section 9.8.2), peering with 3ffe:c00:1:1::1 in AS
65002. Under the IPv6 address family, it activates the exchange of routes with the neighbor
and advertises the 3ffe:b00::/24 route to the neighbor.

configure terminal
router bgp 65001
bgp router-id 192.0.2.1
neighbor 3ffe:c00:1:1::1 remote-as 65002
address-family ipv6
neighbor 3ffe:c00:1:1::1 activate
network 3ffe:b00::/24

When exchanging IPv6 routes only, use the ‘no bgp default ipv4-unicast’ state-
ment under ‘router bgp’, since by default, IPv4 routes are exchanged.



184 Migrating to IPv6

configure terminal
router bgp 65001
no bgp default ipv4-unicast

In enable mode, use the ‘show bgp ipv6’ command to list the details of the BGP
process.

enable
show bgp ipv6

To troubleshoot BGP IPv6 transactions, use the ‘debug bgp ipv6’ command in enable
mode.

enable
debug bgp ipv6

10.6.10 Troubleshooting

To troubleshoot IPv6 routes, use the ‘show ipv6 route’ command in enable mode.

enable
show ipv6 route

10.7 Hexago

This section describes the routing configuration of the Hexago Migration Brokers.
HexOS configuration syntax is similar to other vendors’ syntax. In each example,

‘configure terminal’ or ‘enable’ is shown to distinguish in which context the com-
mands are used. All levels are shown using indentation. Exit commands are not shown for
simplicity.

HexOS have IPv6 forwarding enabled by default.
IPv6 static routes are configured using the ‘ipv6 route’ command. The following

example installs the 3ffe:b00:0:1::/64 static route targeted to the fe80::2 router.

configure terminal
ipv6 route 3ffe:b00:0:1::/64 fe80::2

Static routes are listed using the ‘show ipv6 route static’ command.

enable
show ipv6 route static

10.8 Juniper

JunOS identifies the IPv6 routing information base (RIB) with ‘inet6.X’, instead of
‘inet.X’ for IPv4. The first IPv6 table is named ‘inet6.0’.



Configuring Routing 185

10.8.1 Martian Routes

JunOS identifies invalid routes as martians. When received by the router, these routes are
discarded. For IPv6, the predefined martians are:

• the loopback address (::1);
• the reserved and unassigned prefixes;
• the link-local unicast prefix (fe80::/16).

To add a martian route, the ‘martians’ statement must be used. In the following
example, the unique-local prefix range (any route which starts with fd00::/8 with a prefix
length from 8 to 128) is added as a martian route.

routing-options {
rib inet6.0 {

martians {
fd00::/8 orlonger;

}
}

}

10.8.2 Router ID

When the router is an IPv6-only router (ie. where no IPv4 address configuration is provided),
a 32 bit router ID is configured with the ‘router-id’ statement. The router ID is used in
routing protocols to identify the router. The router-id statement takes an IPv4-formatted 32
bit value as argument. The following example shows the router-id defined for this router as
192.0.2.1.

routing-options {
router-id 192.0.2.1;

}

10.8.3 Static Routes

To install a static route, use the ‘route’ statement under ‘routing-options rib
inet6.0 static’ level. The following example installs the 3ffe:b00:0:3::/64 static route
pointing to the 3ffe:b00:0:1::3 next hop.

routing-options {
rib inet6.0 {
static {
route 3ffe:b00:0:3::/64 next-hop 3ffe:b00:0:1::3;

}
}

}
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10.8.4 RIP

RIP for IPv6 is configured under the ‘ripng’ statement under ‘protocols’. Most state-
ments in ripng are identical to their RIP counterpart, so these are not described. The
following RIP statements are not used in RIPng:

• ‘authentication-(key|type)’ statements because authentication is now done with
IPSEC;

• ‘rib-group’ statement because routing table groups are not supported.

RIPng must be specified for each interface using the ‘neighbor’ statement under ‘group’.
The following example shows a router configured with RIPng on its fe-0/0/1 interface under
the group named ‘LAN’.

protocols {
ripng {
group LAN {
neighbor fe-0/0/1;

}
}

}

Most ‘show rip’ and ‘clear rip’ commands are similar for RIPng using the ‘ripng’
keyword instead of ‘rip’. The following commands are specific to RIPng:

• clear ripng statistics
• show ripng statistics
• clear ripng general-statistics
• show ripng general-statistics
• show ripng neighbor
• show route protocol ripng table inet6

The following example shows the command to list the RIP IPv6 routes.

show route protocol ripng table inet6

10.8.5 OSPF

OSPFv3 is configured under the ‘ospf3’ statement at the same level as the ‘ospf’ state-
ment, under ‘protocols’. Most statements in ‘ospf3’ are identical to their OSPFv2
counterpart, so these are not described. The following OSFPv2 statements are not used in
OSPFv3:

• ‘authentication-(key|type)’ statements because authentication is now done with
IPSEC;

• traffic engineering features.

OSPFv3 must be activated on a per interface basis. The following example shows a router
configured with OSPFv3 on the fe-0/0/1 interface for area 0.
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protocols {
ospf3 {
area 0 {
interface fe-0/0/1;

}
}

}

Most ‘show ospf’ and ‘clear ospf’ commands are similar in OSPFv3 using the
‘ospf3’ keyword instead of ‘ospf’. The following commands are specific to OSPFv3:

• clear ospf3 database
• show ospf3 database
• show ospf3 interface
• clear ospf neighbor
• show ospf3 neighbor
• show ospf3 route

The following example lists the IPv6 OSPF routes.

show ospf3 route

10.8.6 IS-IS

Since it is a network protocol independent routing protocol, IS-IS configuration on JunOS
does not need any changes to statements to support IPv6. By default, all enabled network
protocols on interfaces are advertised in IS-IS unless specifically disabled.

The following example shows IS-IS configured on the fe-0/0/1 interface with a network
entity title (NET) address of 49.0001.0000.0000.000c.00.

interfaces {
fe-0/0/1 {
unit 0 {
family iso {
address 49.0001.0000.0000.000c.00;

}
}

}
}
protocols {
isis {
interface fe-0/0/1;

}
}

This configuration carries both IPv4 and IPv6 routes.
To disable the routing of IPv4 or IPv6 inside IS-IS, use the ‘no-ipv4-routing’ and

‘no-ipv6-routing’ statements respectively. The following example shows a router with
no IPv4 IS-IS routing.
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protocols {
isis {
interface fe-0/0/1;
no-ipv4-routing;

}
}

As of JunOS 5.5, the IPv4 and IPv6 network topologies must be identical.
Most ‘show isis’ and ‘clear isis’ commands are used as they are. To see the IP

routes in the IS-IS routing table, use the ‘show isis routes’ command as shown below.

show isis routes

10.8.7 BGP

JunOS BGP is configured under the ‘protocols bgp’ level, where a peer group is defined
using the ‘group’ statement.

Each BGP address family routes are installed into different routing tables.
The following example shows the basic BGP configuration for a router in AS 65001 having

an eBGP peering, using the ‘type external’ statement, with the 3ffe:b00:1:1::2 neighbor
in AS 65002. Unicast IPv6 routes are exchanged using the ‘family inet6 unicast’
statement.

routing-options {
autonomous-system 65001;

}
protocols {
bgp {
group R2 {
peer-as 65002;
type external;
neighbor 3ffe:b00:1:1::2 {
family inet6 {
unicast;

}
}

}
}

}

To carry unicast IPv4 routes in the same BGP session as well, the ‘family inet’
statement is added at the same level as the ‘family inet6’ statement, as shown below.

neighbor 3ffe:b00:1:1::2 {
family inet6 {
unicast;

}
family inet {
unicast;

}
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To enable IPv6 and IPv4 route exchanges over an IPv4 BGP session, the IPv4-compatible
addresses are used in the interface level. This precludes the need to configure IPv6 static
routes.

The following example shows the 192.0.2.1 router within AS 65001. BGP peering is done
over IPv4, forced with the ‘local-address 192.0.2.1’ statement, with the 192.0.2.2
router within AS 65002. IPv4 and IPv6 routes are exchanged because the ‘family inet’
and ‘family inet6’ statements are used and the fe-0/0/1 interface is configured with an
IPv4-compatible IPv6 address (::192.0.2.1).

protocols {
bgp {
group R2 {
peer-as 65002;
type external;
neighbor 192.0.2.2;
local-address 192.0.2.1;
family inet {
unicast;

}
family inet6 {
unicast;

}
}

}
}
interfaces {
fe-0/0/1 {
unit 0 {
family inet {
address 192.0.2.1/24;

}
family inet6 {
address ::192.0.2.1/126;

}
}

}
}

Note the use of /126 in the IPv4-compatible IPv6 address, since this is a tunnel interface.
Tunnels are discussed in Section 16.2. In this case, the BGP next-hop is the IPv4-compatible
IPv6 prefix (::192.0.2.1).

Peering can be established with link-local neighbor addresses. Since link-local addresses
are ambiguous depending on the interface, the interface must be specified with the
‘local-interface’ statement under ‘neighbor’, as shown below.

protocols {
bgp {
group R2 {
peer-as 65002;
type external;
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neighbor fe80::1 {
local-interface fe-0/0/1;

}
family inet6 {
unicast;

}
}

}
}

When IPv6-only peering is done, the router-id is specified in the IPv4 address format,
using the ‘routing-options router-id’ statement.

routing-options {
router-id 192.0.2.1;

}

Most ‘show bgp’ and ‘clear bgp’ commands can be used as with IPv4. To see the
status of BGP neighbors, use the ‘show bgp neighbor’.

show bgp neighbor

10.8.8 Troubleshooting

Most show commands accepting an IPv4 prefix or address also support an IPv6 prefix or
address, such as ‘show route’, as shown below.

show route 3ffe:b00:0:1::/64

When an address family is specified, use ‘inet’ for IPv4 and ‘inet6’ for IPv6.

show route forwarding-table family inet6

When a RIB table is specified, use ‘inet.X’ for IPv4 and ‘inet6.X’ for IPv6, where
X stands for the identifier of the table.

show route table inet6.0

10.9 Zebra

This section describes the routing configuration of Zebra v0.93b, an open-source routing
daemon. It runs on most Unix variants such as FreeBSD, Linux and Solaris. It implements
RIP, OSPF and BGP for IPv4 and IPv6. Zebra implements one daemon per routing protocol,
a daemon to manage the interfaces and kernel routes named ‘zebra’, and a CLI daemon
named ‘vtysh’ to configure these daemons in an integrated way.

Zebra configuration syntax is based on Cisco CLI syntax. In each example, ‘configure
terminal’ or ‘enable’ is shown to distinguish in which context the commands are used.
All levels are shown using indentation. Exit commands are not shown for simplicity.
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10.9.1 Static Routes

To install a static route, use the ‘ipv6 route’ command. The following example shows
the 3ffe:b00:0:1::/64 static route targeted to the fe80::2 router.

configure terminal
ipv6 route 3ffe:b00:1::/64 fe80::2

10.9.2 RIP

The daemon implementing RIP for IPv6 is ‘ripngd’. Its configuration file is
‘/usr/local/etc/ripngd.conf’. To enable the RIPng routing daemon, use the
‘router ripng’ statement. This enters a sub-mode for additional RIPng configuration
statements, such as the ‘network’ command to announce a route. The following example
shows a RIPng routing daemon activated announcing the 3ffe:b00:1::/64 route.

configure terminal
router ripng
network 3ffe:b00:1::/64

In enable mode, use the ‘show ipv6 ripng’ command to list the details of the RIPng
process.

enable
show ipv6 ripng

To see debugging details, use the ‘debug ripng’ command in enable mode. The com-
mand has options such as ‘events’, ‘packet’ and ‘zebra’.

enable
debug ripng packet

10.9.3 OSPF

The daemon implementing OSPF for IPv6 is ‘ospf6d’. Its configuration file is
‘/usr/local/etc/ospf6d.conf’. To enable the OSPF routing daemon, use the
‘router ospf6’ statement. This enters a sub-mode for additional OSPF configuration
statements.

The ‘interface’ sub-command is used to enable OSPF advertisements on that interface.
The following example configures an OSPF for IPv6 routing daemon, identified by the

192.0.2.1 router-id (see Section 9.6.2), advertising on the ‘fxp0’ interface with area 0
(written in IPv4 address notation), and redistributing static routes in OSPF.

configure terminal
router ospf6
router-id 192.0.2.1
interface fxp0 area 0.0.0.0
redistribute static
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In enable mode, use the ‘show ipv6 ospf6’ command to list the details of the OSPF
process. Options such as ‘database’, ‘interface’ or ‘neighbor’ are available for
additional details.

enable
show ipv6 ospf6 [database | interface | neighbor]

To list the OSPF routes, use the ‘show ipv6 route ospf6’ command.

enable
show ipv6 route ospf6

10.9.4 BGP

The daemon implementing BGP for IPv4 and IPv6 is ‘bgpd’. Its configuration file is
‘/usr/local/etc/bgpd.conf’. To enable the BGP routing daemon, use the ‘router
bgp’ statement followed by the AS number. This enters a sub-mode for additional BGP
configuration statements.

BGP configuration is done in two parts: establishing the peering and exchanging routes.
The peering is established with the ‘neighbor remote-as’ statement, and optionally the
‘router-id’ statement when IPv6-only peering is done. The IPv6 route exchange is acti-
vated under the ‘address-family ipv6’ statement using the ‘neighbor activate’
statement.

The following example configures a BGP for IPv6 routing daemon with AS 65001,
identified by the 192.0.2.1 router-id (see Section 9.8.2), peering with 3ffe:c00:1:1::1 in AS
65002. Under the IPv6 address family, it activates the exchange of routes with the neighbor
and advertises the 3ffe:b00::/24 route to the neighbor.

configure terminal
router bgp 65001
bgp router-id 192.0.2.1
neighbor 3ffe:c00:1:1::1 remote-as 65002
address-family ipv6
neighbor 3ffe:c00:1:1::1 activate
network 3ffe:b00::/24

When exchanging IPv6 routes only, use the ‘no bgp default ipv4-unicast’ state-
ment under ‘router bgp’, since by default, IPv4 routes are exchanged.

configure terminal
router bgp 65001

no bgp default ipv4-unicast

In enable mode, use the ‘show ipv6 bgp’ command to list the details of the BGP
process. This command has options such as ‘community’, ‘neighbors’ and ‘summary’.

enable
show ipv6 bgp
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To see debugging details, use the ‘debug bgp’ command in enable mode. This command
has options such as ‘events’, ‘filters’ and ‘updates’.

enable
debug bgp updates

10.9.5 Troubleshooting

To troubleshoot IPv6 routes, use the ‘show ipv6 route’ command.

enable
show ipv6 route

10.10 Summary

This chapter describes the routing configuration statements and commands of the following
operating systems: FreeBSD, Linux, Solaris, Windows, Cisco, Hexago, Juniper and Zebra.
Template commands and examples are given for each OS to help the reader find the right
commands.

10.11 Further Reading
FreeBSD Handbook, The FreeBSD Handbook Project, 2003, http://www.freebsd.org/handbook/index.html
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IPv6 Administration Guide – Solaris 9, Sun Microsystems, August 2003.
Windows IPv6 Documentation, Microsoft, 2003, http://www.microsoft.com/ipv6
IPv6 for Cisco IOS Command Reference, Cisco, 2003.
Migration Broker Configuration Guide – HexOS 3.0, Hexago, 2004.
Migration Broker Command Reference – HexOS 3.0, Hexago, 2004.
JunOS Internet Software Configuration Guide – Routing Protocols – JunOS 5.5, Juniper, 2002.
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Mobility

In the late 1970s, there were no micro-computers or laptops, only computers taking up a
significant space in a room and having no easy way to move. This is the era in which
IPv4 was designed, so no provision was made for mobile computers. Nowadays, mobile
computers are not only laptops, but cell phones, personal digital assistant (PDA), pagers,
airplanes, cars, tanks, etc.

The handling of mobility is accomplished at many layers as shown in Figure 11.1.
With the wireless LAN standard IEEE 802.11 [IEEE80211], a mobile node can move from

one access point to another without any disruption of the IP traffic, because the mobility
aspects are handled by the 802.11 protocol and by the access point devices. However, while
moving, if a mobile node changes or needs to change its IP address because its new point
of attachment is on another IP subnet or network, then the IP traffic is disrupted.

In the context of IP, mobility is defined by the node changing its IP address while moving.
If it moves without changing IP address, there is no IP mobility involved. If it moves from
an Ethernet LAN to another Ethernet LAN and changes IP address, then IP mobility is
involved. If it moves from a wireless LAN to a PPP connection and changes IP address,
then IP mobility is involved.

MobileIP is an IP protocol designed to sustain the IP connections while the IP address
changes. MobileIP is designed to work for IPv4 and IPv6, although it is optimized for IPv6.
The mobile node is known by its peers with a permanent address and an agent is mandated to
forward the traffic to the current location of the mobile node. The agent knows the location
of the mobile node because each time the mobile node moves, it registers its new location,
i.e. the new IP address, to its agent.

This chapter describes MobileIP with a focus on MobileIPv6. It starts with a general
overview using the phone call forwarding metaphor and then describes MobileIP in detail.

Migrating to IPv6: A Practical Guide to Implementing IPv6 in Mobile and Fixed Networks Marc Blanchet
© 2006 John Wiley & Sons, Ltd
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Figure 11.1 Mobility at different layers

11.1 Overview

MobileIP process is very similar to the call forwarding function in telephony, as illustrated
in Figure 11.2 and Table 11.1.

Alice knows Bob’s primary telephone number (1). If Bob moves to another location (3)
where he has another phone number, then he configures the switch to forward the calls
coming for its primary number to its remote phone number (4). Alice still knows Bob’s

Usual location

PBX
Bob

Bob

Remote location

(3) (4) (6) (7)

(5)

(1)(2)

+1-111-111-1234 +3-333-333-1234

+2-222-222-1234

Alice

Figure 11.2 Call forwarding
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Table 11.1 Equivalence between MobileIP and call forwarding

Call Forwarding Function MobileIP Function

Primary phone number Home IP address
Primary switch Home agent (HA)
Process to register the new phone

number
Binding update (BU)

New phone number Care-of-address (CoA)
Correspondent Correspondent node (CN)
Mobile user Mobile node (MN)

primary telephone number, but an agent, the switch, takes care of forwarding Bob’s calls
to him (6). If Bob moves again, he only needs to change the configuration of the switch to
forward calls to the new phone number, without having to tell Alice and all his correspondents
about where he is now.

11.1.1 MobileIP Terminology

In the MobileIP context and terminology,

• the primary telephone number is the node home IP address;
• the switch is the home agent (HA), which is usually a router on the home network;
• the process to register your new telephone number is the binding update (BU);
• the correspondent (Alice) is the correspondent node;
• and the new phone number is the Care-of-address (CoA).

The word ‘home’ in MobileIP terminology is not related to the physical home where one
lives, but is defined as the permanent place where the permanent IP address resides and
where a permanent agent forwards the traffic directed to the permanent IP address. For an
employee, the home network is typically the organization network where the permanent IP
address is assigned and a router on that network takes care of the home agent function.

11.1.2 Basic MobileIP Process

In a nutshell, the MobileIP process is described by the following steps, illustrated in
Figure 11.3:

1. A mobile node uses its permanent address, the home address, when it is located on its
home network. If a node sends a datagram to the mobile node (step 1 in Figure 11.3), it
sends it to the home address of the mobile node.

2. The mobile node receives the datagram on the home network.
3. When a mobile node is visiting a network, away from its home network, it acquires by

some means from the visiting network a temporary IP address, called the care-of-address
(CoA).

4. The mobile node registers this CoA to its home agent.
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Figure 11.3 MobileIP basic process

5. The correspondent node knows the mobile node only by its home address, thus it sends
a datagram with the destination address as the home address of the mobile node.

6. The datagram is routed to the home network where the home agent intercepts and forwards
the datagram to the mobile node based on the home agent knowledge of the mobile
node care-of-address, this address being located in the visiting network. The mobile node
receives the datagram.

7. When the mobile node sends a datagram to a correspondent node, the source address
of the datagram is the home address of the mobile node and it sends it directly to the
correspondent node.

The correspondent node has no knowledge of the mobility of the (mobile) node. The effort
of handling mobility is entirely done by the mobile node’s own infrastructure: the home
agent and the mobile node itself.

11.1.3 Triangle Routing

To continue with the call forwarding metaphor, when Bob calls Alice while he is away
from his primary phone, he uses another phone with another phone number, as illustrated in
Figure 11.4.

If Bob does not tell Alice the new phone number (+2-222-222-1234 in Figure 11.4), she
still calls Bob’s primary phone number (+1-111-111-1234) and the switch forwards the call
to Bob’s current phone number. This may cost Bob a lot since he will be paying for the long
distance call between the primary phone number (+1-111-111-1234) and the current phone
number (+2-222-222-1234).

In the MobileIP context, this behavior is called triangle routing and is the basic behavior
in absence of any optimization, as illustrated in Figure 11.5.

The mobile node sends datagrams directly to its correspondent nodes (step 3 in Figure 11.5),
by setting the home address as the source address of the packets. The correspondent nodes
still send their datagrams to the home address (step 1) and the home agent forwards them
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Figure 11.5 MobileIP triangle routing
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(step 2) to the current location (care-of-address) of the mobile node. This triangle routing may
create delays, caused by a long round trip time that affects real-time traffic such as voice over
IP (VoIP). Also it impacts on reliability since the longer path may have broken links.

Route optimization is an optional feature of MobileIP eliminating triangle routing.

11.1.4 Route Optimization

Again using the call forwarding metaphor, if Bob gives his temporary phone number to
Alice, she can call Bob directly on his temporary phone number, as illustrated in Figure 11.6.
This will not cost Bob a penny since it is a direct call.

In the MobileIP context, this same behavior is called route optimization, as illustrated in
Figure 11.7.

The mobile node informs its correspondents of its care-of-address (step 1 in Figure 11.7),
so correspondent nodes send datagrams (2) to the care-of-address without going through the
home agent.

11.1.5 Handoff

Continuing the call forwarding metaphor, if Bob gives his temporary phone number to Alice,
then whenever Bob moves again to a new phone number, he needs to tell Alice the new
phone number as well as register the new phone number to the switch controlling the primary
phone number. While Bob is telling them the new phone number, some of the correspondents
still call him on his previous temporary phone number and Bob is not there, causing a black
hole as illustrated in Figure 11.8.

Usual location
Bob PBX

+1-111-111-1234

Remote location
Bob

+2-222-222-1234

Alice

Figure 11.6 Call forwarding direct call
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Figure 11.7 MobileIP route optimization

Usual location

+1-111-111-1234
PBX

Remote location

+2-222-222-1234

New remote location

+4-444-444-1234Bob

Alice
+3-333-333-1234

Figure 11.8 Call forwarding miss

In the MobileIP context, this is called the handoff problem, where correspondents send
datagrams to a previous care-of-address after the mobile node has already gone. Many
solutions are possible depending on the context of the handoff.

If Bob does not give his temporary phone numbers to his correspondents, then they will
still call the primary phone number. Therefore, the only handoff problem remaining in this
case concerns the time during which Bob is using a new temporary phone and the primary
switch has not yet been set to forward calls to the new phone number.
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11.2 MobileIP

After this introduction to mobility using the analogy of call forwarding, this section describes
how mobileIP works. MobileIP is defined for IPv4 (MobileIPv4) [RFC3344] and for IPv6
(MobileIPv6) [RFC3775], however, each version is different. The rest of this chapter
describes MobileIP in general, with an emphasis on MobileIPv6 specific functions.

11.3 Applications are not Aware of Mobility

An important design criteria of MobileIP is that applications are not aware of mobility, there-
fore they are not modified to support MobileIP. To achieve this, the application on the mobile
node always uses and sees the permanent address, named ‘home address’, as the source address
of packets on the mobile node. Figure 11.9 shows the layers at which the IP addresses are
managed for mobility purposes, when the mobile node sends a packet to the destination node.

MobileIP manages the changes of the source address in the IP stack of both peers, restoring
the permanent address as the source address of the connection when the correspondent node
application receives the packet from the stack.

11.4 Mobile Node is at Home

MobileIP home agents (HA) are specially configured routers implementing MobileIP. Peri-
odically, they send router advertisements with specific MobileIP data to tell mobile nodes that
a home agent is available on the network and advertising a prefix, as shown in Figure 11.10.

Application Application

Transport 
(TCP,UDP, ...)

Transport 
(TCP,UDP, ...)

Source address =
Home address

Source address =
Home address

MobileIPIP MobileIPIP

Source address =
Home or Care-of-address

Source address =
Home or  Care-of-address

MN

MN

CN

Figure 11.9 Application and IP stack view of mobileIP
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RA:HA, prefix=
3ffe:b00:0:1::/64 FF02::1

Home link

MN
HA

Figure 11.10 Home agent advertising

The mobile node receives these advertisements and compares the received network prefix
with its previously saved home prefix. If they are identical, then the mobile node knows it
is on its home link. The home address is the permanent address used for all connections,
either while at home or visiting another network.

While at home, a mobile node behaves as a normal IP node. No mobility specific processing
is done. The mobile node sends its packets using the home address as the source address.

11.5 Mobile Node is away from Home

A mobile node needs to know when it has moved to start using the MobileIP functions. At
the MobileIP level, a node moves when its IP address changes.1 To find when it has moved,
a node compares its saved home address with a new acquired address. When the addresses
are equal, it is at home, otherwise it is visiting another network. A mobile node visiting a
network acquires an IPv6 address by autoconfiguration or DHCPv6.

Correspondent nodes (CN) know the mobile node by its home address. By default, the
correspondent node sends datagrams to the home address, as shown in Figure 11.11.

The home agent, which proxies the mobile node while it is away, intercepts the packets
addressed to the mobile node home address, encapsulates them in an IPv6 packet with the

Home

MN

MN

Visiting network

CNHA

IP
v6

 in
 IP

v6

Figure 11.11 Correspondent node sends a packet to the home address

1 Recall that when a mobile node may move from one access point to another one without changing IP address, the
mobility functions are taken care of at the layers below IP and do not involve MobileIP.



204 Migrating to IPv6

mobile node care-of-address as the destination address and sends them the mobile node
at the visiting site. The home agent proxies the mobile node home address by sending a
neighbor advertisement message (see Section 6.2) on behalf of the mobile node, advertising
the mobile node home address. All neighbor solicitations sent to the home address by any
node on the link are answered by the home agent.

11.5.1 Mobile Node Registering to the Home Agent

After acquiring its new IP address and discovering it is visiting, the mobile node registers
its new IP address to its home agent, through a secured message named the Binding Update
(BU). The binding update is protected by IPsec (see Section 11.8), which means that a
security association was pre-established between the mobile node and the home agent prior
to the binding update. After the binding update, the home agent can then forward any packets
received for the mobile node to its new IP address, as shown in Figure 11.11.

11.5.2 Mobile Node Registering to the Correspondent Nodes

The Binding Update (BU) is also sent to some of its correspondent nodes to inform them of
the new IP address of the mobile node. After receiving the binding update, the correspondent
nodes send packets directly to the new location of the mobile node without going through
the home agent. The binding update also contains a lifetime of the new IP address, which
is kept in the cache of the correspondent node. The correspondent node sends a binding
acknowledgement to the mobile node, acknowledging the reception of the binding update.
The binding update message format is described in Section 11.11.

The binding updates to the correspondent nodes require the correspondent node to imple-
ment the return routability procedure, described in Section 11.8.2.

11.5.3 Mobile Node Sending Packets

After sending the binding updates while visiting, the mobile node sends packets directly to
its correspondent nodes as described in Table 11.2.

The care-of-address used as the source address enables the packet to go through the
visiting network without any filtering issues. If the visiting network is filtering the source
address of the outgoing packets by verifying that the source address belongs to the network,
then the packet is not filtered if the source address is the care-of-address of the mobile node.

Table 11.2 IPv6 header of a packet sent by the mobile node while visiting

Field Description

Source address Mobile node Care-of-address
Destination address Correspondent node address
Home address destination

option extension header
Contains the home address of the mobile node.
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When the packet arrives at the correspondent node, the packet source address is replaced
by the home address included in the destination option header before pushing the packet
in the application stack. The application sees the home address of the mobile node as the
source address, which is the permanent address of the mobile node.

11.5.4 Correspondent Node Sending Packets to the Mobile Node

By default, the correspondent node sends the packets to the mobile node using its home
address as destination address, as shown in Table 11.3.

The packet is intercepted by the home agent and encapsulated to the current location of
the mobile node, as shown Figure 11.11.

If a binding update tells the correspondent node of the new IP address of the mobile node,
the care-of-address, then the correspondent node sends the packet to the care-of-address, as
shown in Figure 11.12.

The packet also contains a routing header which encapsulates the home address of the
mobile node as the next hop. The IPv6 header of a packet sent by the correspondent node is
shown in Table 11.4.

When the mobile node receives this packet, the IP stack sees the routing header and
processes it by replacing the destination address with the first (and only one) address in the
routing header (routing header processing is described in Section 9.2). Thus the IPv6 header
presented to the application in the mobile node is shown in Table 11.5.

Table 11.3 IPv6 header of a packet sent by the CN to MN HA

Field Description

Source address Correspondent node address
Destination address Mobile node Home address

Home

CN

Visiting network

MN

MN
HA

Figure 11.12 Correspondent node sending to MN CoA
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Table 11.4 IPv6 header of a packet sent by the CN with MN CoA

Field Description

Source address Correspondent node address
Destination address Mobile node care-of-address
Routing header Contains the home address of the mobile node as

the next hop.

Table 11.5 IPv6 header of a packet presented to the application

Field Description

Source address Correspondent node address
Destination address Mobile node home address

11.6 Mobile Node is Moving Again

When the mobile node moves again, it acquires a new IP address on the new visiting network
and sends the binding updates to its home agent and correspondent nodes, as described
above. However, there is a time gap between when the mobile node has acquired its new
IP address, named care-of-address 2, but the correspondent node has not yet received the
binding update. During that gap, the correspondent nodes send the traffic to the previous IP
address, care-of-address 1, which is no longer valid, thus packets are discarded, as shown in
Figure 11.13.

This is the handoff problem: while moving, traffic is sent to the wrong place. Solutions
to this issue are discussed in Section 11.10.1.

Home address

Care-of-address1 Care-of-address2

MN

MN

MN

CNHA

Figure 11.13 Mobile node moving again
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11.7 Mobile Node Comes Back Home

When the mobile node returns to its home network, it does the same process as if moving
again: it gets an address in the network and, compares it with its home address. When back
home, the comparison is positive and the mobile node no longer uses the mobileIP functions
to send traffic to its correspondent node. However, it will send the binding updates to its
home agent and correspondent nodes to inform them of the new location.

11.8 Securing the Binding Update

MobileIP is essentially a host routing protocol, designed to modify the normal routing for
a specific host. Since it changes the usual way of sending a datagram to a host, MobileIP
could be an opportunity to create new passive or active attacks, denial of service or more
generally security threats [Mankin, 2001].

The binding update, which informs a correspondent node of the new care-of-address, is
implicitly authenticated by the correspondent node, verifying that it does not come from a
rogue node. To authenticate the update, the correspondent node and the mobile node need
to have a previously established security association. Since there is no global public-key
infrastructure yet on the global Internet, the other way is to share a secret.

11.8.1 Security Association with Home Agent

The interaction of the mobile node with its home agent includes the re-routing of the traffic
addressed to the mobile node to another location, its visiting address. A weak or non-existent
security association between the mobile node and its home agent would enable a rogue node
to send binding updates to the home agent redirecting traffic destined for the mobile node to
a rogue location. For this reason, IPsec ESP [RFC3776] in transport mode is used between
the mobile node and its home agent to secure the MobileIPv6 control messages such as the
binding update.

11.8.2 Return Routability Procedure with Correspondent Nodes

After a mobile node informs its correspondents of its new IP address, the correspondents
send the traffic directly to the new location. If a rogue node can send rogue IP addresses
to the correspondent nodes, then all the traffic to the mobile node is redirected to a rogue
location. To avoid these issues, a security association between the mobile node and each of
its correspondent nodes, similar to the one used with its home agent, could be used. This was
actually proposed in the early days of the mobileIPv6 definition. However, it is impractical
because the correspondent nodes of mobile nodes are public Web servers, portals, e-mail
servers, etc., all of which have no intrinsic security association possible with nodes. How
can a well-known portal or search engine can maintain millions of security associations and
manage and encrypt this level of traffic? A lightweight process done by the mobile node and
the correspondent nodes through the home agent enables the correspondent node to establish
that the mobile node really owns the home address it claims to, while not creating a costly
non-scalable security association. This process, called the return routability procedure, is
shown in Figure 11.14.
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1a.HoTI

2a.HoT

1b.CoTI

HA CN

MN

Care-of-address

2b.CoT

Figure 11.14 Return routability procedure

The goal of the return routability procedure is to create an association between the
correspondent node and the mobile node where the correspondent node has a way to verify
that the binding updates of the mobile node really come from the mobile node that owns the
claimed home IP address.

The process involves the mobile node sending random generated keys sent through the
home agent and replied to by the correspondent node. The cryptographic process creates a
cache in the correspondent node to authenticate future binding updates.

Table 11.6 lists the steps in the procedure shown in Figure 11.14. Details of the cryp-
tographic processing, cookies and keys are discussed in the MobileIPv6 specification
[RFC3775].

Table 11.6 Return routability procedure steps

From → To Message Description and content

0 Correspondent node generates a random
key once and nonces regularly.

1a MN → HA → CN Home Test Init (HoTI) The mobile node generates a home init
cookie and sends it to the correspondent
node through the home agent.

1b MN → CN Care-of Test Init (CoTI) The mobile node generates a care-of init
cookie and sends it directly to the
correspondent node without going
through the home agent.

2a CN → HA → MN Home Test (HoT) The correspondent node replies to the
home test init (HoTI) message by
sending this message to the mobile node
through the home agent. The message
contains the home init cookie and a
hash, called home keygen token, based
on the correspondent node random key,
a nonce and the home address.
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2b CN → MN Care-of Test (CoT) The correspondent node replies to
the care-of test init (CoTI) message
by sending this message directly
to the mobile node without going
through the home agent. The message
contains the care-of init cookie and a
hash, called care-of keygen token,
based on the correspondent node
random key, a nonce and the
care-of-address.

3 Mobile node and correspondent node
now share some secret used by the
correspondent node to verify the origin of
future binding updates.

Hashes based on the exchanged information are then used in the binding updates and
acknowledgments between the mobile node and the correspondent node to verify the validity
of these messages.

This return routability procedure requires the correspondent nodes to implement this
algorithm and to maintain a cache of mobile nodes. IPv6 nodes are not required to implement
this algorithm: in this case, the init messages sent by the mobile node in step 1 will be
refused by the correspondent node not implementing the return routability procedure and
an ICMP error message will be sent back to the mobile node. The mobile node may cache
that information not to send further init messages to this correspondent node. When a
correspondent node does not support the return routability procedure, the traffic from the
correspondent node to the mobile node is sent to the home address and the home agent
tunnels the traffic to the current care-of-address of the mobile node.

11.9 Correspondent Node is Not MobileIP Aware

MobileIPv6 has many optimizations relying on some minimal MobileIPv6 processing done by
the correspondent node. During the course of the IETF standards work for IPv6 and MobileIP,
the requirement that any IPv6 correspondent must implement some MobileIP functionality
was dropped from required to optional. The previous sections explain MobileIPv6 with the
assumption that the correspondent node is MobileIPv6 aware. This section describes the
differences when a correspondent node is not MobileIPv6 aware.

A mobileIP node implementation manages its interaction using a cache which includes a
list of correspondent nodes, home agents, states of bindings, etc. This cache is also used to
handle the case when some of its correspondent nodes are not implementing MobileIP.

A correspondent node that is not implementing mobileIPv6 does not understand or use the
mobileIP messaging, such as binding updates, home address destination option and return
routability messages.
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11.9.1 Mobile Node Registering to the Correspondent Node

Section 11.5.2 describes the process where the mobile node registers with the correspondent
node by starting the return routability procedure, described in Section 11.8.2. Without
prior knowledge of the correspondent node, the mobile node starts the return routability
procedure by sending the Home test Init (HoTI) and Care-of Test Init (CoTI) messages to
the correspondent node. When the correspondent node does not understand these mobileIP
messages which are included in the mobility extension header, the correspondent node sends
an ICMP error message2 to the mobile node, stating its ignorance of such an extension
header. Figure 11.15 shows the return routability procedure started by the mobile node and
the ICMP error message reply by the correspondent node.

The mobile node then updates its cache identifying that this correspondent node is not
implementing mobileIP and therefore should not receive binding updates and return routabil-
ity messages in the future.

11.9.2 Mobile Node Sending Packets

Section 11.5.3 describes the process of the visiting mobile node sending packets to its
correspondent nodes. If a correspondent node is not implementing MobileIPv6, its stack
cannot process the Home-Address destination option sent by the mobile node. This home
address destination option means the source address of the packet is the care-of-address
of the mobile node. Recall that an application is not aware of mobileIP because it always
receives the mobile node home address as the source address of the packet. The application
receiving the care-of-address as the source address while the connection was established
with the home address, simply discards the packet.

After the failure of the return routability procedure used before the mobile node sends
packets directly to its correspondent nodes, the mobile node puts in its cache the status that
this correspondent node does not implement mobileIPv6.

1a.HoTI 1b.CoTI

MN

CNHA

Care-of-address

2a.ICMP Error

2b.ICMP Error

Figure 11.15 ICMP error message sent by the CN

2 Parameter problem, code 1: see Table 7.3.
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Figure 11.16 Mobile node sending packets through home agent

Instead of sending a packet directly to the correspondent node, which would reject it, the
mobile node encapsulates its IPv6 packet to the correspondent node in another IPv6 packet
to the home agent, building a tunnel back to the home agent, as shown in Figure 11.16.

The inner packet has the mobileIP home address as its source address. The home agent
decapsulates the packet and forwards the inner packet to the correspondent node. Table 11.7
shows the headers of the packet sent by the mobile node to the correspondent node through
the home agent. The outer packet to the home agent is protected by IPsec.

The correspondent node receives the decapsulated packet as if it was coming from the
home address of the mobile node.

11.9.3 Correspondent Node Sending Packets to the Mobile Node

Section 11.5.4 describes how a correspondent node sends packets directly to the mobile
node, by using the mobile node care-of-address as the destination address and by using the
routing header. This is applicable when the correspondent node supports the basic mobileIPv6
functionality needed for correspondent nodes. If the correspondent node does not support
mobileIPv6, then it has no knowledge of the mobile node care-of-address and only knows
the mobile node by its home address. In this case, the correspondent node sends the packet
to the home address, as shown in Table 11.8.

Table 11.7 Header of a packet sent by the MN to CN through HA

Field Description

Outer Packet
Source address Mobile node care-of-address
Destination address Home agent address

Inner Packet
Source address Mobile node home address
Destination address Correspondent node address
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Table 11.8 IPv6 header of a packet sent by the CN to MN
home address

Field Description

Source address Correspondent node address
Destination address Mobile node home address

Table 11.9 Header of a packet forwarded by the HA to MN

Field Description

Outer Packet
Source address Home agent address
Destination address Mobile node Care-of-address
IPsec extension header ESP

Inner Packet
Source address Correspondent node address
Destination address Mobile node home address

The home agent intercepts the packet and encapsulates it in an IPv6 packet to the mobile
node care-of-address, as shown in Figure 11.11. The header of the encapsulated packet is
shown in Table 11.9.

The home agent should protect the encapsulated packet with IPsec ESP because the home
agent and the mobile node have a security association.

11.10 Advanced Features

MobileIP has many more features. As the intent of this chapter is to get an overview of
MobileIPv6, this section discusses some issues and features without trying to be compre-
hensive. The interested reader should refer to a MobileIPv6 book e.g., [Soliman, 2004].

11.10.1 Fast Handoff

As discussed previously, after the mobile node has changed location but before its corre-
spondent nodes have received the binding update, there is a gap when the traffic is sent to
the previous location, as shown in Figure 11.13. This handoff situation is solved in different
ways, depending on the requirements of the applications and the layer 2 infrastructure. Two
ways to solve the problem are described here. At the time of writing this book, no solution
has been yet standardized at the IETF for fast handoff.

One solution is where the mobile node requests to a router in the previous network to
intercept all traffic going to the previous location of the mobile node, encapsulate the traffic
and forward it to the new location, as shown in Figure 11.17.

A router in the previous network, named ‘foreign agent’, is offering the service on behalf
of the mobile node. There are also some security issues of a router forwarding traffic of
another node, without previous authentication.
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Figure 11.17 Relaying from previous location

Another way to solve this handoff problem is by having the home agent copy the packets
to both locations, as shown in Figure 11.18.

This is especially useful when the mobile node is attached to multiple links at the same
time. The key advantage is less delay for the mobile nodes to get the datagrams from the
correspondent node.

11.10.2 Home Agent is Not Reachable

The home agent of a mobile node might become unavailable, for different reasons, such as
hardware or software failure of the home agent device, failure of the link, loss of connectivity

Home address

Care-of-address1 Care-of-address2

MN

MN
HA

MN

CN

(2)

(1)

Figure 11.18 Home agent copying packets to both locations
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to the home network, etc. To solve some of these situations, the mobile node sends a request
message to the Home Agent discovery anycast address requesting home agents to respond.
The Home agent discovery anycast address is formed by the home address prefix and a
reserved anycast address in the host part. This anycast packet is sent by the mobile node
and forwarded to the home network. If at least one home agent is available, it responds by
sending the list of live home agents on the link. A home agent can send the list of all home
agents on the link because all home agents listen to router advertisements to look for the
home agent identification bit (see Section 11.11).

11.10.3 Mobile Networks

Network mobility (NEMO) [RFC3963] handles the mobility of a set of computers with one
router connecting to the other networks. Mobile networks can be personal such as a laptop
with Wifi and PDA or airplane, car or military battlefield networks, linking wireless devices
together.

As shown in Figure 11.19, NEMO is implemented by building an IPv6-in-IPv6 tunnel
between the mobile router (MR) and the home agent (HA). This tunnel carries IPv6 traffic
from and to the mobile network (MN1, MN2), by encapsulating the original IPv6 packets
into IPv6 packets carried between the home agent (HA) and the mobile router (MR).

The binding updates are used to exchange the information of the prefix(es) of the mobile
network, the care-of-address and a mobile router flag to build the tunnel. The home agent
then creates the tunnel interface and assigns all the mobile network prefixes to this tunnel
interface. The outer IPv6 addresses of the tunnel are the mobile router care-of-address and
the home agent address. Apart from the tunnel establishment and the routing of the mobile
network prefixes, the mobile router is acting like a normal mobile node.

In the NEMO basic architecture, only the mobile router (MR) must support MobileIPv6
and NEMO. The mobile nodes (MN1, MN2) within the mobile network do not have to
implement either MobileIPv6 or NEMO.

Home
network

Visiting
network

MN2

MN1

MR

CN

IP
v6

 in
 IP

v6

HA

IPv6

Figure 11.19 NEMO basic architecture
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11.11 MobileIP Messaging

This section describes the MobileIPv6 messages and their fields. This is for reference to
help the reader who wants to understand more of the details, while not being comprehensive.
This section can be skipped.

11.11.1 Mobility Extension Header

MobileIPv6 uses a specific extension header, named the Mobility header, for the bindings
messaging. It is inserted in the chain of extension headers after the IPv6 header. The mobility
header fields are listed in Table 11.10.

Messages defined within the mobility header are listed in Table 11.11.

11.11.2 Home Address Destination Option Extension Header

The home address destination option message is an IPv6 extension header used by the mobile
node, while visiting, to inform the recipient, its home agent and the correspondent nodes, of
its home address.

11.11.3 Type 2 Routing Header

The type 2 routing header is an IPv6 routing header (see Section 9.2) used by the corre-
spondent node to send packets directly to the mobile node, without going through the home
agent. The type 2 mandates the use of only one hop source routing, while type 1 may include
many hops for complex source routing. The address put by the correspondent node in the
type 2 routing header is the home address of the mobile node, while the IPv6 destination
address of the packet is the mobile node care-of-address. Such a packet is routed directly
to the mobile node, but the mobile node internal IPv6 stack processes the routing header
and replaces the destination address with the home address taken in the routing header. The
applications inside the mobile node will then see the home address as the destination address,
which makes them unaware of mobility in general, and of the direct path routing used. The
type 2 routing header contains the fields listed in Table 11.12.

11.11.4 ICMP Messages

MobileIPv6 uses the ICMP messages listed in Table 11.13.

Table 11.10 Mobility header fields

Name Size Description

Payload protocol 8 bits Identifies the next header after this one. Should be
set to none (59). Reserved for future use.

Header length 8 bits Length of the mobility header in units of 8 octets
Mobility Header Type 8 bits Identifies the type of message.
Checksum 16 bits Checksum of the mobility header.
Data variable Content of the message.
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Table 11.11 Mobility header message types

Name Mobility
header type

Description

Binding Refresh
Request

0 Sent by correspondent nodes to mobile node to request a
binding refresh.

Home Test Init
(HoTI)

1 Sent by mobile node to initiate a return routability procedure.
The message contains the Home Init Cookie, a 64 bit random
token generated by the mobile node.

Care-of Test Init
(CoTI)

2 Sent by the mobile node to initiate a return routability
procedure. The message contains the Care-of Init cookie, a 64
bit random token generated by the mobile node.

Home Test (HoT) 3 Sent by the correspondent node to the mobile node. The
message contains the Home Init Cookie and the Home
Keygen Token.

Care-of Test (CoT) 4 Sent by the correspondent node to the mobile node. The
message contains the Care-of Init cookie and the Care-of
Keygen Token.

Binding Update (BU) 5 Sent by the mobile node to the home agent and correspondent
nodes. The message contains some flags, a sequence number
and the lifetime of the binding. A BU may contain the
following options: binding authorization data, nonce indices
and alternate care-of-address.

Binding
Acknowledgment
(BA)

6 Sent by the home agent and the correspondent node to
acknowledge the reception of the binding update. The
message contains some flags, a status number stating the
acceptance/refusal of the BU, a sequence number (copied
from the BU sequence number) and the lifetime of the binding
granted by the sending node. A BA may contain the following
options: binding authorization data and binding refresh advice.

Binding error 7 Sent by the correspondent node to signal an error.
The message contains a status number and the home address
destination received from the mobile node.

Table 11.12 Type 2 routing header fields

Name Size Value Description

Next header 8 bits Identifies the next header.
Header extension length 8 bits 2 Length of the mobility header in

units of 8 octets.
Routing type 8 bits 2 Identifies the type of message.
Segments left 8 bits Number of hops. This is a

degenerated case of the more
general routing header case.

Home address 128 bits Home address of the mobile node.
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Table 11.13 ICMP Mobility message types

Name Description

Home agent address discovery
request

Sent by the mobile node to the home agent’s
anycast address on its own home subnet
prefix. This messages enables the mobile
node to find the home agents.

Home agent address discovery reply Sent by the home agents responding to the
mobile node home agent address discovery
request. It contains the home agent’s address.

Prefix solicitation Sent by the mobile node to its home agent. It
requests the prefix used at home.

Prefix advertisement Sent by the home agent to advertise the home
prefix to the mobile node, in response to its
prefix solicitation request.

11.11.5 Neighbor Discovery

MobileIPv6 makes some changes to the neighbor discovery protocol, as listed in
Table 11.14.

Additionally, to help the mobile node detect their movement, home agents should
send router advertisements as fast as every 50 milliseconds. Compared to minutes in the
non-mobile case, this rate of sending router advertisement means a burden for all nodes on

Table 11.14 MobileIPv6 changes to router advertisements

Name Description

Home agent flag A flag in the router advertisement is
used by the home agents to identify
themselves as home agents.

Router address flag in the prefix
advertisement

A flag is added to prefix information
to identify the home agent global
address. This is used by the dynamic
home agent discovery.

Advertisement interval This value is sent by the home agents
to tell the nodes the frequency of
sending the router advertisements.
This helps the mobile node to
calculate the maximum time to wait
until it could safely decide it is out of
reach of the home agent, thus away
from its home network.

Home agent information Optional information sent by the
home agent to the mobile node, to
influence its use of the home address
and the home agent lifetime.
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that network to process these packets. Care should be taken to use these values only on
subnets which have mobile nodes requiring this rate for fast movement detection.

11.12 Deployment Considerations

Considerations on managing security in networks using MobileIPv6 and on using IPv4 and
IPv6 mobility are discussed in this section.

11.12.1 Enterprise Network with Mobile Nodes on Most Links

An enterprise has a large network where mobile nodes have their primary point of attachment
on most links. A typical case is where laptops are used by a large number of the users, they
connect on their own office LAN, and there are many LANs. One then needs to provide
the home agent capability on all these LANs. Providing that capability on most or all LANs
might be seen by some network managers as a complex management task. Moreover, it also
means that all these home agents must be reachable from the outside, e.g. the Internet, when
the mobile nodes are visiting networks. This implies opening the firewall to let mobileIP and
IPv6 packets going through the internal network up to the home agents, without too much
control. This will be difficult to filter correctly and might be an important security risk that
some organizations might not want to take.

One other way to solve this issue is to dedicate a /64 prefix for a virtual LAN, assigned to
a home agent which is located at the border of the network and reachable from the outside
and the inside, as shown in Figure 11.20.

The mobile node gets its prefix (3ffe:b00:0:1::/64) and home address on the home virtual
LAN (A) by static configuration. When the mobile node is inside on its office LAN (B), it
is not located on the LAN which advertises its home prefix. The mobile node is considered
away from its home LAN and will behave as if it is visiting a network. When the mobile
node goes outside (C), it is visiting too. So the mobile node is always ‘away’ from home,

prefix=
3ffe:b00:0:1::/64

Home
virtual
link

Public networkOffice network
MN

B)

A)

MN

C)

Office
LAN

HA

Figure 11.20 Home virtual link
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even when it is connected to its office LAN. This approach has its own drawbacks, but
solves the security issues discussed above.

11.12.2 Security Considerations

A network that attaches foreign mobile nodes (e.g. visiting) needs to open its firewall to let
many special types of IPv6 packets pass through. These types of packets are:

• IPv6 in IPv6 packets;
• IPv6 packets with mobility header;
• IPv6 packets with home address destination option;
• ICMPv6 mobility packets;
• IPv6 packets with routing header.

These types of packets might present a security risk that an organization might not want
to take. In this case, the visiting mobile nodes will not be able to use the mobileIPv6
functionality on that visiting network.

11.12.3 IP Version Centric

MobileIPv4 is for IPv4 mobility; MobileIPv6 is for IPv6 mobility. A mobile node imple-
menting MobileIPv6 means the visiting network must have IPv6 availability. The TSP tunnel
broker, a migration tool discussed in Section 16.2.9, provides mobility for both versions of
the protocol, as discussed below.

11.12.4 Ubiquitous IP

Since MobileIP is IP version centric, a mobile node that is visiting IPv4-only networks
receiving a global IPv4 address, IPv4-only networks receiving a private address, and IPv6-
only networks, do not have a single mobility solution for all these cases. However, the TSP
tunnel broker, as discussed in Section 16.2.9, does provide ubiquitous IP, by enabling both
IP protocols to be seamlessly available all the time.

Figure 11.21 shows such a case where the mobile network is moving from IPv4 to IPv4
with NAT to IPv6 and the TSP tunnel broker provides connectivity for both protocols in all
the cases. The TSP tunnel broker is similar to the home agent functionality.

11.13 Configuring Mobility

This section describes how to configure MobileIPv6 and TSP tunnel broker on the platforms.

11.13.1 FreeBSD

FreeBSD has an implementation of MobileIPv6 as part of the Kame IPv6 stack and supports
TSP tunnel broker.
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Figure 11.21 TSP tunnel broker as mobility server

11.13.1.1 MobileIPv6

By default, the FreeBSD kernel is not compiled for MobileIPv6. Table 11.15 lists the lines
to be added to the kernel configuration file.

Modify the /etc/rc.conf to enable MobileIPv6 and configure interfaces appropriately.
To configure a home agent, use the following lines.

# cat /etc/rc.conf
ipv6_mobile_enable="YES"
ipv6_mobile_nodetype="home_agent"
ipv6_mobile_home_prefixes="3ffe:b00:0:1::/64"
ipv6_mobile_home_link="fxp0"

Since a home agent is a router, forwarding (ipv6_gateway_enable) must also be configured,
as discussed in Section 10.2.

As a home agent, the router advertisement interval, configured in the /etc/rtadvd.conf file,
is much shorter than the normal case. The following lines define the interval between 4 and
6 seconds.

# cat /etc/rtadvd.conf
fxp0:
:maxinterval#6:mininterval#4:

Table 11.15 FreeBSD kernel config for MobileIPv6

Kernel config line Description

options MIP6 To enable MobileIPv6 processing. Must be present
in any MobileIPv6 functionality: mobile node,
correspondent node and home agent.

options MIP6_MOBILE_NODE To enable the MobileIPv6 mobile node functionality.
options MIP6_HOME_AGENT To enable the MobileIPv6 home agent functionality.
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To configure a mobile node, use the following lines.

# cat /etc/rc.conf
ipv6_mobile_enable="YES"
ipv6_mobile_nodetype="mobile_node"
ipv6_mobile_home_prefixes="3ffe:b00:0:1::/64"

The Kame MobileIPv6 toolkit contains commands as listed in Table 11.16.
IPsec security associations must be set between the home agent and the mobile node.

These configuration statements are not discussed here.

11.13.1.2 TSP tunnel broker client

The TSP tunnel broker client configuration on FreeBSD is discussed in Section 16.5.2.3.
Specific mobility configuration parameters are discussed in Section 11.13.5.

11.13.2 Linux

Linux supports MobileIPv6 and TSP tunnel broker.

11.13.2.1 MobileIPv6

MobileIPv6 on Linux is developed by HUT [Helsinki University of Technology]. It is
configured by the network-mip6.conf file. Table 11.17 lists the key statements of this
configuration file.

A mobile node configuration file is shown below.

# cat /etc/network-mip6.conf
FUNCTIONALITY=mn
HOMEDEV=mip6mnha1
HOMEADDRESS=3ffe:b00:0:1::/128
HOMEAGENT=3ffe:b00:0:1::1/64

Table 11.16 FreeBSD MobileIPv6 commands

Command Description

had Dynamic home agent discovery protocol
daemon

mip6control A control program for MobileIPv6
functions

mip6stat Statistics of packets related to
MobileIPv6

mip6makeconfig.sh Tool to generate IPsec template
configurations

mip6seccontrol.sh To set IPsec parameters
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Table 11.17 Linux network-mip6.conf MobileIPv6 configuration file statements

Statement name Possible values Description

FUNCTIONALITY cn Define the node as
correspondent node

ha Define the node as home agent
mn Define the node as mobile node

DEBUGLEVEL Number Define the level of debug
messages

HOMEDEV Device name Define the interface name on
which the home address is set

HOMEADDRESS IPv6 address/128 Sets the home address of the
mobile node

HOMEAGENT IPv6 address/64 Sets the home agent address for
the mobile node

The mipdiag command is used for troubleshooting.

11.13.2.2 TSP tunnel broker client

The TSP tunnel broker client configuration on Linux is discussed in Section 16.5.3.4. Specific
mobility configuration parameters are discussed in Section 11.13.5.

11.13.3 Solaris

The TSP tunnel broker client configuration on Solaris is discussed in Section 16.5.4.3.
Specific mobility configuration parameters are discussed in Section 11.13.5.

11.13.4 Windows

The TSP tunnel broker client configuration on Windows is discussed in Section 16.5.5.5.
Specific mobility configuration parameters are discussed in Section 11.13.5.

11.13.5 Hexago

The Hexago TSP tunnel broker client can be used to provide pretty good mobility, as
discussed in Section 11.12.4. Some parameter default values should be changed for fast
handoff. The tspc.conf file parameters listed in Table 11.18 should be modified by
decreasing the values to provide a faster handoff.
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Table 11.18 TSP client tspc.conf statements for mobility

Variable Default value Possible values Description

retry_delay 0 number When a TSP connection fails, the
number of seconds to wait before
retrying to connect to the tunnel
broker.

keepalive yes yes no When set to ‘yes’, the client sends
keepalives to keep the tunnel active.
It is especially useful to have the
NAT keep its mapping to maintain a
sustainable tunnel over UDP.

keepalive_interval 30 number This interval in seconds should be
smaller than the NAT mapping
timeout for UDP. The client sends a
keepalive to the broker every
keepalive_interval seconds. The
broker may force a higher value
than the client wants, given an
expected load on the broker by a
provider.

11.14 Summary

MobileIP is used to sustain the IP communications while changing the IP address. MobileIPv6
is more deployable and optimized than MobileIPv4, such as direct communication between
the mobile node and the correspondent node.
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Wireless IP

IP is now being used over wireless links, making it even more ubiquitous than before. Since
the IP protocol suite, including TCP, is link-layer independent, it was not designed for the
specificities of wireless links. The initial deployment of IP over satellite links [RFC2488]
showed many inefficiencies. This chapter discusses the challenges and modifications to the
IP protocol suite to accommodate the new wireless networks, such as Wifi [IEEE80211] and
3G [3GPP, 3GPP2].

12.1 Characteristics of Wireless Links

A recent trend in wireless and cellular networks, like Bluetooth and 3G, is to use the IP
protocol as the layer 3 protocol, which gives ubiquitous, seamless and universal connectivity.
However, IP is not optimized for wireless links.

Wireless links exhibit some specific characteristics:

• Limited bandwidth: the radio spectrum is a rare and costly resource where the bandwidth
available on radio links is usually much smaller than wired links. 2.5G networks have
10–20 kilobit per second (kbps) uplink and 10–40 kbps downlink. 3G networks have
64 kbps uplink and 384 kbps downlink for their minimal grade service.

• Higher error rate: because of the expensive radio spectrum, cellular networks design trade
offs tend to prefer higher error rates to minimize the use of the spectrum. The typical
bit-error rate (BER) is 1e−3 and can be up to 1e−2 in severe conditions [RFC3095].

• Latency and long link round trip time: typical 100–200 ms [RFC3095] round trip time in
radio networks is pretty long compared to wired networks. The RTT could be as high as
one second.
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• Changes in link characteristics: a mobile device moves, thus changes its distance to the
base station. The wireless protocol then adapts and changes the link characteristics, such
as decreased bandwidth. The resulting bandwidth-delay product in 3G networks is similar
to satellite systems [RFC2488], known to have sub-optimal TCP performance.

These characteristics, and the dynamic nature of wireless links, result in sub-optimal TCP
performance on wireless links because of the following issues:

• IP header length costs too much bandwidth.
• TCP flow control makes non-optimal assumptions about network congestion.

These two issues are discussed in the following sections.

12.2 Header Compression over Limited Bandwidth Link Layers

Most real-time protocols for voice and video over IP use the Real Time protocol (RTP)
[RFC3550] over UDP. A RTP datagram over UDP over IPv4 has a combined header size of
40 octets: 20 octets for the IPv4 header, 8 octets for the UDP header and 12 octets for the
RTP header. Over IPv6, the combined header size is 60 octets, since the IPv6 header is 20
octets longer than the IPv4 one and UDP and RTP header sizes are the same. If the voice
traffic rate is 50 datagrams per second, then the IPv6, UDP and RTP combined headers (60
octets) consume 50 × 60 × 8 = 24 kbit/second, while the voice traffic with GSM encoding
uses 13 kbit/second. Considering that a typical voice over IP datagram might have 15–20
octets of data, the header tax is very high, especially considering the limited bandwidth.

Header compression [RFC2507] is needed for the following reasons (note that the com-
pression of the data portion of the voice or video datagrams is already handled by the
application protocols):

• improved response time;
• bandwidth usage efficiency for small packets;
• lower latency for smaller packets;
• decreased overhead of header;
• reduced packet loss.

A header compression protocol [RFC2508] compresses the RTP-UDP-IPv4 headers to 4
octets with an UDP checksum, 2 octets without, using a modified version of the known Van
Jacobson compression scheme [RFC1144]. However, it only works well for low link round
trip time and suffers a bad domino effect of losing many datagrams if an error happens
in one compressed datagram [RFC3096]. A more optimized protocol, the Robust Header
Compression (RoHC)[RFC3095] is designed for wireless links and used in WCDMA, EDGE
and CDMA2000 wireless networks.

This section describes the overall technique of header compression without going into the
details[RFC2508, RFC3095].

Header compression [RFC3095] is accomplished by removing the redundancy of header
information for a specific flow of datagrams on a point-to-point link. Most wireless network
technologies behave as point-to-point links. A specific flow can be characterized by the
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same source and destination addresses, the same source and destination ports, and possibly
some session context fields, such as the Synchronization Source (SSRC) field in RTP which
identifies the RTP session. Multiple datagrams of the same flow contain the same header
fields, are redundant, and therefore can be eliminated, effectively compressing the header for
the second and subsequent datagrams. Additionally, when some header fields are changed
but the new values are predictable, the compression algorithm may predict them.

A context id is used to identify the context of a specific compression state. A ROHC
packet with a specific link-layer number is used for the control part of the compression.
A simplified view of the compression process is as follows:

1. Send the full header with a new context identifier for the first datagram.
2. Send a compressed header with the context identifier for the subsequent datagrams.
3. When a compressed header field changes, either resend the full header or change to a

new context identifier.

Tables 12.1, 12.2 and 12.3 list the characteristics of the fields for IPv4, IPv6 and UDP
headers, respectively.

Table 12.1 IPv4 header compression

Name Use for compression

Version Static
Header Length Eliminated
TOS Dynamic
Total Length Eliminated
Identification Dynamic
Flags Dynamic
Fragment Offset Eliminated
Time to Live Dynamic
Protocol Static
Checksum Eliminated
Source Address Static
Destination Address Static

Table 12.2 IPv6 header compression

Name Use for compression

Version Static
Traffic Class Dynamic
Flow Label Static
Payload Length Eliminated
Next Header Static
Hop Limit Dynamic
Source Address Static
Destination Address Static
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Table 12.3 UDP header compression

Name Use for compression

Source Port Static
Destination Port Static
Checksum Dynamic
Length Eliminated

Some fields are static on the point-to-point link, some are dynamic and some are not
relevant and can be eliminated. For example, a typical RTP/UDP/IPv4 packet has static
fields of 25 octets and dynamic fields of 15 octets. A typical RTP/UDP/IPv6 packet has
static fields of 49 octets and dynamic fields of 11 octets. Therefore, the IPv6 compressed
headers are smaller than their IPv4 counterpart because fewer octets are dynamic.

12.3 TCP Behavior over Wireless

TCP design assumes a small bit error rate, typical to wired networks. The flow control is
based on network congestion, not on the bit error rate of the link layer. TCP slows down the
data rate in case of failures, so each independent TCP connection, decreasing its data rate,
contributes to decreasing the congestion.

On a wireless link, the bit error rate is much higher and usually causes the majority of
packet loss. TCP behavior on these links reacts as if there was network congestion, by
decreasing the data rate and backing off, which creates poor performance, even if there is
no network congestion.

When the TCP connection is traversing a wireless and a wired network as shown in
Figure 12.1, the bit error rate on the wireless link and the congestion control on the wired
network compete and double the problem in the TCP back off algorithm.

Many solutions have been proposed to solve this issue. One method is to intercept the TCP
connection with a TCP proxy at the border of the wireless link, implementing a modified
algorithm to take care of the high bit error rate on the wireless link, as shown in Figure 12.2.

The TCP proxy is seen as the source of the connection by the destination. However, this
method breaks the end-to-end connection model of TCP/IP and therefore is not recommended.
Moreover, there is no IETF standard for this mechanism.

The combination of a larger congestion window size [RFC3390], Selective Acknowledg-
ments (SACK) [RFC2018] and ECN, as described in Section 19.2.1, and specific TCP config-
uration values are recommended [RFC3481] for better TCP performance over wireless links.

tcp

Wireless Wired

Figure 12.1 TCP over wireless and wired networks
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Figure 12.2 Split TCP

12.4 3GPP

The third generation partnership program, 3GPP, is the standard [3GPP] for GSM/GPRS-
based 3G networks. Only a limited IP view is described here.

From an IP view [RFC3314], the User Equipment (UE) such as a cell phone has a point-
to-point link to the Gateway GPRS Support Node (GGSN), its next hop router, over the
General Packet Radio Services (GPRS) air network, as shown in Figure 12.3.

The point-to-point link uses the Packet Data Protocol (PDP) within a negotiated context
in the underlying infrastructure. The point-to-point link is assigned a /64 prefix.

Figure 12.4 shows the protocol stack of the GPRS infrastructure which includes the
Universal Terrestrial Radio Access Network (UTRAN) and the Serving GPRS Support Node
(SGSN), delivering the layers below IP. The whole 3GPP protocol stack and interactions are
not discussed here.1

The User Equipment, such as the cell phone, establishes a PDP context with the GPRS
infrastructure, creating a point-to-point link to the GGSN. The GGSN is an IP router for-
warding IP packets to the Internet.

A Terminal Equipment (TE), such as a laptop, is connected over PPP to the Mobile
Termination (MT), the cell phone, as shown in Figure 12.5.

This PPP connection creates another PDP context on the GPRS air network for carrying
the IP traffic of the TE through the network. Figure 12.6 shows a modified version of the
Figure 12.4 protocol stack, where the laptop (TE) IP traffic is shown. Note that the cell
phone can still send IP traffic, but will use its own PDP context (shown in Figure 12.6).

UE

/64

GPRS
air network

GGSN
IPv6IPv6 in PDP

Figure 12.3 IPv6 link on 3GPP

1 From Figure 12.4, note that the UTRAN, SGSN and GGSN modules use UDP/IP between themselves to carry
the above IP packets.
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12.5 3GPP2

The third generation partnership program 2, 3GPP2, is the standard [3GPP2] for CDMA2000-
based 3G networks. It has a different architecture than 3GPP. Only a limited IP view is
described here.

As shown in Figure 12.7, the Mobile Station (MS) uses PPP with its access server, the
Packet Data Serving node (PDSN), to access the IPv6 network, for the IPv6 connectivity.2

This PPP channel uses the radio network as its link-layer.
As discussed in Section 6.7, PPP provides a channel for IPv4 and a channel for IPv6 on

the same PPP link if both ends support both IP protocols. Negotiation of the IPv6 link-local
addresses is first done inside PPP. When link-local addresses are assigned on each side,
the PDSN sends router advertisements on the link, advertising a /64 prefix assigned to this
PPP link from a PDSN IPv6 prefix pool. The mobile station then autoconfigures using the
received /64 prefix.

The 3GPP2 mobile station can use IP header compression with the PDSN as discussed in
Section 12.2.

12.6 Summary

Wireless links introduce new link-layer characteristics such as limited bandwidth, higher
error rate and latency. The IP protocol stack is modified to accommodate these changes, by
compressing the IP and transport headers and by optimizing TCP. The 3G wireless networks,
3GPP and 3GPP2, introduce new architectures where the handset gets a /64 prefix over the
point-to-point link. These large subjects have had whole books devoted to them: this chapter
provides only a limited perspective on these issues.
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Security

Computers, networks, operating systems, applications, users, policies and protocols are
components forming a complex system, where they interact with each other. Security should
be applied to each component separately, as well as to all components as a system. Perfect
security does not exist: security is about managing risks.

For the purposes of this book, the discussion will be focused on the specifics of IPv6 secu-
rity, and should not be considered by any means to be comprehensive on network security.

Figure 13.1 identifies very simply where some of the security solutions discussed in this
chapter fit in the networking stack.

IP security (IPsec) works at the IP layer, SSL/TLS at the session layer, SSH at the
session/application layer and Secure Neighbor Discovery (ND) at the frontier between IP
and the link-layer. These topics as well as others, such as temporary addresses and network
address translation, are discussed in this chapter. Is IPv6 more secure than IPv4? Keep
reading until the end of the chapter� � � .

SSL/TLS

IPsec

Secure ND

SSH

Application

Session

TCP, UDP, ?

IP

Physical

Figure 13.1 Layers and security
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13.1 IP Security (IPsec)

When the IETF was working on requirements for IPv6, security at the IP level was identified
as a key requirement [RFC1752]: IP security was to be mandatory for IPv6. This work started
a separate working group on IP security (IPsec). IPsec [RFC2401] is defined and designed
to be used for both IPv4 and IPv6. This is good for the security of currently deployed IPv4
networks, but bad for IPv6 since it decreases the traction towards IPv6 based on security
needs.

IPsec protects the IP layer communications. It is usually handled in the kernel of operating
systems, and applications may or may not be aware of the IP security established between
two nodes.

IPsec has two encapsulation modes: transport and tunnel. When two IPsec peers need to
secure their communication, they first start by establishing a security association. Then they
use either or both the Authenticated Header or the Encapsulating Security Payload services.

13.1.1 IPsec Transport and Tunnel Modes

As noted above, IPsec has two modes of encapsulation: transport and tunnel. Figure 13.2
shows nodes N1 and N2 establishing a secure IP connection using IPsec, which illustrates
the transport mode: end-to-end security.

Figure 13.3 shows the tunnel mode, where N1 establishes a secure IP connection with
the Virtual Private Network (VPN) server, not with N2. N1 encapsulates its traffic to N2 in
a secure IP connection towards the VPN server. The VPN server decapsulates the secured
traffic and forwards it to N2, which receives the traffic unsecured from N1. A secure tunnel
is built from N1 to the VPN server.

Modes can be combined in many different ways. Figure 13.4 shows the tunnel mode used
between N1 and the VPN server, and the transport mode used between N1 and N2. Every
packet going from N1 will have two IPsec encapsulations: one to the VPN server and one
for N2.

N1
N2

Figure 13.2 IPsec transport mode between two end nodes

N1

VPN
server

N2

Figure 13.3 IPsec tunnel mode from a node to a VPN server
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N1
N2

VPN
server

Figure 13.4 IPsec tunnel and transport modes used simultaneously

Important to remember:

IPsec has two modes of encapsulation: transport (between two end nodes) and tunnel
(between gateways).

13.1.2 Establishing a Security Association

For each pair of IPsec peers, a security association is established prior to sending secured
packets. This involves keys exchanges and cryptographic algorithms negotiations1 using the
Internet Key Exchange (IKE) protocol [RFC2409]. IKE uses the IP addresses to identify the
keys used in the exchange, which makes IKE aware of the IP protocol and addresses. Since
IKE has nothing special regarding IPv6, it is not detailed here.

13.1.3 AH Header

IPsec has two security services: Authenticated Header and Encapsulating Security Payload.
The IPsec Authentication Header (AH) [RFC2402] provides:

• integrity of the whole packet;
• authentication of the source;
• replay protection.

Figure 13.5 shows the IPv6 packet, where the gray fields are protected by AH and the
white are not. Fields in the header that change values in a unpredictable way in the path
cannot be protected. The traffic class field could be changed by diffserv routers. The flow
label could be changed between different QoS domains. The hop limit is decremented by
each router in the path.

All other fields, such as the source and destination addresses, the extension headers, the
transport header and the packet data are protected by AH.

The protection is made by computing a cryptographic checksum over the protected fields.
This checksum as well as the security association information is stored in the AH extension
header, which is identified by the value 51 in the Next Header field.

Figure 13.6 shows a packet sent from N1 to N2 as in Figure 13.2 using the transport
mode and AH. A security association is established between N1 and N2 prior to sending
this packet. The AH extension header is inserted between the IP header and the transport (in
this example: transport = 6 = TCP).

1 Static keying can also be used, but has some problems and is not discussed here.
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Version Traffic class

Payload length Next header

Source address

Destination address

Extension headers

Data

32 bits

Hop limit

Flow label

Figure 13.5 IPsec AH protected fields in the IP packet
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dst = N2

src = N1
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+ data

Transport
+ data
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IP header

5
1 6
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Figure 13.6 IPsec AH in transport mode

The whole new packet is protected by the AH cryptographic checksum: except for the
traffic class, the flow label and the hop limit fields, a change in any other field, such as the
source address, the transport port or the data is detected by the other peer (in this example,
N2, the destination).
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Figure 13.7 IPsec AH in tunnel mode

Figure 13.7 shows a packet sent from N1 to N2 as in Figure 13.3 using the tunnel mode
to the VPN server with AH. A security association is established between N1 and the VPN
server prior to sending this packet. The difference with the transport mode is that the original
packet with the N2 destination is inserted completely in a new packet with the destination
of the VPN server, together with the AH header.

The whole packet is protected. When the VPN server receives the packet, it verifies
its integrity and then decapsulates the packet to forward the original packet, now unpro-
tected, to N2.

Figure 13.8 shows a packet sent from N1 to N2 as in Figure 13.4 using the tunnel mode
to the VPN server with AH, combined with the transport mode to N2 with AH. A security
association is established between N1 and the VPN server, and between N1 and N2 prior to
sending this packet. A AH header for the transport mode to N2 is first added to the original
packet and then this modified packet is inserted in a new packet with the VPN server as
destination and the AH header for the tunnel mode.

Figure 13.9 shows the AH header itself, which is inserted as an extension header in the
previous examples.

The AH header contains the fields listed in Table 13.1.
In summary, IPsec AH provides integrity of the whole packet, authentication of the source

and replay protection, using the AH extension header. It does not provide confidentiality. It
can be used in the transport or in the tunnel mode.

Important to remember:

IPsec AH provides integrity of the whole packet, authentication of the source and replay
protection. It does not provide confidentiality.
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Figure 13.8 IPsec AH headers in tunnel and transport modes
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Figure 13.9 IPsec AH header
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Table 13.1 IPsec AH header fields

AH field name Description

Next Header Identifies the payload following the AH header. If no other
extension headers are present, in transport mode, it is usually
the transport protocol number; in tunnel mode, it is usually
the IP protocol number (41 for IPv6) since the payload is the
original whole packet starting with the IP header.

Payload Length Specifies the length of the AH header only.

Security Parameters Index (SPI) With the destination address, the SPI uniquely identifies a
security association with the other peer.

Sequence Number Specifies a incremental counter to avoid the replay attacks.
(A previously used number cannot be reused, so an attacker
cannot reinsert an old packet.)

Authentication Data The cryptographic checksum of the whole packet using a
cryptographic algorithm identified by the security association.

13.1.4 ESP Header

IPsec Encapsulating Security Payload (ESP)[RFC2406] provides:

• confidentiality;
• integrity of the inner packet;
• authentication of the source;
• anti-replay protection.

Compared to AH, ESP adds confidentiality (encryption), but has a more limited integrity
protection, covering only the payload.

An ESP extension header is identified by the value of 50 in the Next Header field.
Figure 13.10 shows the IPv6 packet, where the gray fields are protected by ESP and the

white are not. None of the IPv6 header is protected. Only the content of the payload is
protected, including the transport protocol header. If the ESP confidentiality service is used,
then the payload is encrypted.

Figure 13.11 shows a packet sent from N1 to N2 as in Figure 13.2 using the transport
mode and ESP. A security association is established between N1 and N2 prior to sending
this packet. The ESP extension header is inserted between the IP header and the transport
(in this example: transport = 6 = TCP).

The payload of the original packet, including the transport protocol header, is encrypted
as shown by the crossed fields.

Figure 13.12 shows a packet sent from N1 to N2 as in Figure 13.3 using the tunnel mode
to the VPN server with ESP. A security association is established between N1 and the VPN
server prior to sending this packet. The difference with the transport mode is that the original
packet with the N2 destination is inserted completely in a new packet with the destination
of the VPN server, together with the ESP header.

The original packet is completely encrypted in the payload of the outer packet. But the
outer header is not protected.
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Figure 13.10 ESP payload protection
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Figure 13.11 IPsec ESP header in transport mode
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Figure 13.12 IPsec ESP header in tunnel mode

Figure 13.13 shows a packet sent from N1 to N2 as in Figure 13.4 using the tunnel
mode to the VPN server with ESP, combined with the transport mode to N2 with AH. This
shows the combination of modes (transport and tunnel) and security services (AH and ESP).
A security association is established between N1 and the VPN server, and between N1 and
N2 prior to sending this packet. A AH header for the transport mode to N2 is first added
to the original packet and then this modified packet is inserted into a new packet with the
VPN server as destination and the ESP header for the tunnel mode.

Figure 13.14 shows the ESP header itself, which is inserted as an extension header in the
previous examples.

The ESP header contains the fields listed in Table 13.2.
In summary, IPsec ESP provides confidentiality and integrity of the inner packet, authen-

tication of the source and replay protection, using the ESP extension header. It can be used
in the transport or in the tunnel mode. ESP and AH can be combined together.

Important to remember:

IPsec ESP provides confidentiality and integrity of the inner packet, authentication of
the source and replay protection. It does not protect the whole packet.

13.1.5 IPsec and IPv4 NAPT

IPsec is an example of a protocol which uses the IP address of the peers in its intrinsics.
The IP addresses are protected by the AH header, as shown in Figure 13.5. IKE uses IP
addresses to identify keys, as discussed in Section 13.1.2. When a NAPT device is in the
path between two IPsec peers, IPsec does not work [RFC3715]. ESP does not work for TCP
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Figure 13.13 IPsec AH-transport and ESP tunnel combined modes
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Table 13.2 IPsec ESP header fields

ESP field name Description

Security Parameters Index (SPI) With the destination address, the SPI uniquely identifies a
security association with the other peer.

Sequence Number Specifies a incremental counter to avoid the replay attacks.
(A previously used number cannot be reused, so an attacker
cannot reinsert an old packet.)

Payload Data + Padding Embed the encrypted payload of the original packet. Padding
is used to synchronize with specific requested sizes of
cryptoalgorithms, such as the block size of block ciphers.

Next Header Identifies the payload following the ESP header. If no other
extension headers are present, in transport mode, it is usually
the transport protocol number; in tunnel mode, it is usually
the IP protocol number (41 for IPv6) since the payload is the
original whole packet starting with the IP header.

Authentication Data The cryptographic checksum of the whole packet using a
cryptographic algorithm identified by the security association.

and UDP transport because of a mismatch in the transport checksum. Since the addresses,
port numbers and checksum are changed by the NAPT device in the path, the integrity
check done by other peers upon receiving the modified packet, inevitably fails. The IETF
is working on modifying IPsec to make it more NAPT friendly for IPv4, but not for all
cases and at the important cost of decreasing the protection, which defeats the purpose of
IPsec. Moreover, it will take years to upgrade NAPT devices and IPsec clients. Instead, IPv6
enables IPsec deployment without these problems.

13.1.6 IPsec and IPv6

Given the security threats on networks and the need for security at the IP layer, IPsec became
popular. However, the IPv4 NAPT causes a lot of headaches for users and support staff, so
IPsec is often not used because of the limitations of IPv4 NAPT. Moreover, either proprietary
extensions or modifications to IPsec will take years to deploy and a lot of effort.

IPsec is mandatory for all IPv6 nodes and IPv6 does not have addressing limitations that
required NAPT for IPv4. IPsec is easier to deploy over IPv6 and will help secure the Internet,
the enterprise networks and the home. Moreover, IPsec, being mandatory, enables developers
to design new applications and protocols using the IPsec infrastructure in place for IPv6.
Therefore, the application and protocols will have more security embedded from the start.

13.2 Secure Shell (SSH)

Secure Shell (SSH)[Ylonen et al., 2003] is a secure remote login and file transfer protocol and
application, replacing telnet and ftp. It is widely used by network and system administrators
to manage servers and network devices remotely. SSH is IPv6-ready. IPv6 configuration of
SSH is discussed in Section 22.4.
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13.3 Filtering and Firewalls

Security policies should be applied for IPv6 traffic for the same reasons as for IPv4. However,
there are some specific considerations for IPv6. The book web site contains examples of
security policies.

13.3.1 ICMP Filtering

IPv6 nodes rely on Path MTU discovery (see Section 3.6.2) to get the maximum performance
for a connection. Path MTU discovery relies on the ICMP packet too big error messages
(see Section 7.1.1.2) that are sent from routers on the network to the sending node. Some
sites implement their security policies in IPv4 by preventing ICMP messages from passing
through their firewall. For IPv6, specific ICMP messages, such as ICMP packet too big,
should pass through to enable nodes to work properly.

13.3.2 MobileIPv6

The IPv4 source routing feature is known to be used for some attacks. For that reason, most
IPv4 security policies block source routing in firewalls. IPv6 source routing is implemented
by the routing header (see Section 9.2). Without further thinking, an IPv6 security policy
would block the routing header too. However, the routing header is used by MobileIP (see
Chapter 11); blocking the routing header at the border of a network would disable MobileIP
from working properly with mobile nodes. Packet tunneling, other extension headers and
specific ICMP messages are used by the MobileIPv6 protocol. An IPv6 security policy
should take into account the use of MobileIP.

13.3.3 Network Address/Port Translation

NAPT hides the identity of the IPv4 nodes that are behind it. If the security policy is applied
after the NAPT processing, there is no easy way to permit and deny traffic patterns from
nodes behind the NAPT, since they are not recognizable from the IP source address and
ports. Moreover, troubleshooting of NAPTed traffic is very difficult since a synchronization
of the events (that is, the problem being troubleshot and the translation function) must be
done. If there are multiple NAPTs in the path, troubleshooting becomes very difficult or
impossible to do. Without NAPT in IPv6, applying the security policies and troubleshooting
is much simpler, since the packet header fields are not changed en route.

13.4 Temporary Addresses

In IP, when a node moves to another network, it receives a new address. The change of
address makes it difficult for some servers to track the node when it moves. This is why Web
sites often use HTTP cookies to keep track of users, whatever IP address they might have.

When an IPv6 autoconfigured node moves, the prefix changes but the interface identifier
remains the same, since the node uses the autoconfiguration mechanism on the new network
and the identifier is based on the same hardware address. This raised some concerns on
privacy, since the IPv6 node could be easily tracked based on the rightmost 64 bits of its
address that do not change even when it moves.
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The solution is to use temporary interface identifiers, changed ‘often’, to achieve the given
goal of privacy. The interface identifier is no more based on the hardware address, but instead
is randomized and changed periodically, implementing temporary addresses. The specifica-
tion [RFC3041] defines a way to ensure the randomness of the changes to minimize the possi-
bility of guessing the new addresses based on the older ones, which would defeat the purpose.

When a new temporary address is generated, the old one goes to the deprecated state (see
Section 5.3), so it can still receive packets from already established connections but cannot
be used for new connections.

However, temporary addresses make debugging of networking events more difficult since
the address changes over time. It will be more difficult to correlate activities in log files,
that are usually based on IP addresses.

Hardware cards are often designed with a few numbers of registers for multicast addresses
and processing. Minimizing the number of multicast groups to listen to, helps multicast
processing to be done directly by the card. The use of randomly generated temporary
addresses breaks this optimization since the last 24 bits will be different so each temporary
address will generate a new solicited-node multicast address to be listened to.

13.5 More Secure Protocols

With security in mind and the ubiquitousness of IPsec in IPv6 stacks, the IPv6 protocol suite
is more secure and uses more security services. For example, some enhancements are:

• IPsec used in routing protocols (see chapter 9);
• IPsec used in MobileIPv6 (see section 11.8);
• Hop limit set to 255 (see section 7.3).

13.6 Securing IPv6 on the Link

When a rogue node has physical access to a link, as illustrated by N3 in Figure 13.15,
many tools can be used to make attacks. Wireless networks make this more difficult since
the rogue node just has to receive enough wireless signal, even if it is not in the building
or room, where the wireless network is intended to service. Tools such as traffic tapping,
specially formed packets or responding to local-link queries are security threats. These are
similar for any layer 3 protocol, such as IPX, IPv4 or IPv6. IPv4 uses ARP, DHCP and
ICMP for interaction on the local link. IPv6 uses Neighbor Discovery and ICMP.

N1 N3 N2

R1

Figure 13.15 Link example with a rogue node
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Table 13.3 Link access trust models

Trust model Typical scenario

A node trusts all other nodes on the link. Corporate internal network
A node only trusts the routers on the link. Provider access network
A node does not trust any node on the link. Ad-hoc network

13.6.1 Threats and Trust Models for IPv6 on the Link

Figure 13.15 shows a local link with nodes N1, N2, router R1 and a rogue node N3.
Inherent to a link access, a node may trust zero, some or all nodes on the link. Table 13.3

lists the trust models [RFC3756] and related typical scenarios.
Many threats have been identified [RFC2461, RFC2462, RFC3756, RFC3971] regarding

the link-local interaction. Some are listed in Table 13.4, using Figure 13.15 for the examples.
These link-level threats are not so new in IPv6, since most are also possible in IPv4, using

ARP, DHCP or ICMP messages.
IPsec was identified [RFC2461] as securing neighbor discovery but automatic keying

(IKE) is based on an existing IPv6 address which is not yet configured at the time the neigh-
bor discovery services are needed to secure the configuration messages. Manual keying is
impracticable [Arkko, 2003, RFC3756] especially for mobile nodes and for the solicited-node
multicast addresses. Instead, public-key based signatures added to the neighbor discovery
messages and cryptographically generated addresses are used by the secure Neighbor Dis-
covery protocol to remedy many of the listed threats for the trust models.

13.6.2 Secure Neighbor Discovery

Secure neighbor discovery (SEND) is defined in two parts: SEND itself [RFC3971] and
cryptographically generated addresses (CGA) [RFC3972]. This section summaries the two
mechanisms.

13.6.2.1 Finding a Trusted Router

Routers have to be trusted by the nodes. Prior to connecting, the node is pre-configured
with a list of trust anchors, identified by public keys and a name, which are authoritative
to issue certificates for routers [RFC3971]. When a node connects to a link, it sends a new
solicitation message, named the certification path solicitation message, to all routers on the
link asking for certificates related to the pre-configured trust anchors. Routers respond by
sending certificates that were signed by the trust anchors specified in the solicitation.2 The
node then sends a router solitication and routers respond with a router advertisement signed
by one of the certificates. The node can then validate the router advertisements since the
host is pre-configured with trusted keys that were used to sign the received router certificates
used to sign router advertisements. That way, the nodes can trust the router advertisements
sent by trusted routers.

2 These can be signed directly or through a certification path from the trust anchor. Direct certificates are discussed
for simplicity although the specification allows certification paths.
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Table 13.4 Threats on link-local interaction

# Threat Description Message

1 Neighbor
solicitation(NS) and
advertisement(NA)
spoofing

N3 sends a Neighbor solicitation (NS) or a Neighbor
advertisement (NA) message with N1, N2 or R1 IP
addresses and N3 link-layer address. Traffic goes to N3
instead of valid nodes.

NS, NA

2 Neighbor
Unreachability
Detection (NUD)
failure

N3 sends NA responding to NUD NS messages of
others. Nodes think another node is still reachable,
while it is not.

NS, NA

3 Duplicate Address
Detection (DAD)
failure

N3 responds to each DAD NS message claiming it
owns the address. Nodes do not configure an address.

NS, NA

4 Announcing as
default router

N3 sends router advertisements (RA) announcing itself
as a default router. Traffic goes to N3 instead of R1.

RA, RS

5 Disabling a default
router

N3 sends RA as if it comes from R1, with a router
lifetime of zero. R1 is no more used to forward traffic.

RA, RS

6 Redirecting traffic N3 sends ICMP redirect messages as if it comes from
R1. Traffic goes to N3 instead of R1.

ICMP redirect

7 Invalid on-link prefix N3 sends RA with a non-valid prefix identified on-link.
Off-link traffic to this prefix is denied or sent to N3
(by adding threat #1).

RA

8 Flooding prefixes N3 sends RAs with so many prefixes that the nodes
drop the valid prefixes.

RA

9 Invalid autoconfig
prefix

N3 sends RA with a non-valid prefix identified for
autoconfiguration. Nodes autoconfigure and send
traffic with source addresses including the non-valid
prefix; response traffic never comes back.

RA

10 Invalid parameters
in RA

N3 sends RA with invalid parameters such as Hop
limit too small or with the flags to specify a DHCPv6
configuration, which would be done by N3.

RA

11 Keep routers busy N3 sends packets with random addresses, causing R1
to send NS messages.

NS

13.6.2.2 Verifying the Address Ownership of a Neighbor

Each node on the link involved in SEND generates and uses a cryptographically generated
address (CGA) [RFC3972]. This is composed of the link prefix (/64) and the interface
identifier generated from the hash3 of the public-key of the address owner (the node who
owns the address).

The CGA and public-key are sent inside new options of neighbor solicitation and neighbor
advertisement messages. The whole neighbor discovery message is signed by the private key
corresponding to the public key used to generate the CGA.

3 Actual format is more complicated than just the hash: the interested reader should read the specification [RFC3972].
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With this information, the receiving node can verify the neighbor discovery messages by
verifying the signatures and by recomputing the hash of the public key that generated the
CGA. This way, the receiving node is sure that the message comes from the node that owns
that address, and not by a rogue node.

13.7 Is IPv6 More Secure?

IPv6 is a new protocol and is implemented with new code. New code means new security
flaws. However, IPv6 as a protocol fixes many issues regarding IPv4 security. It is hoped
that the IP stack developers learned while working on the IPv4 issues and code IPv6 more
securely. Some new attacks were discovered and some old attacks are now difficult to
achieve. For example, the typical network scan of addresses on a subnet is now much
more difficult from outside, because there are 264 possibilities to try; sure, there are some
optimizations to decrease this number, but it is still very long by any measure. This attack
is even more difficult if nodes use temporary addresses, which are ephemeral compared to
the scan time.

From the framework perspective, IPv6 does not have NAPT. The absence of NAPT helps
designing security policies, troubleshooting and deploying security services such as IPsec.

Protocols in the IPv6 protocol suite are more secured, for example by using IPsec for their
security services. New security protocols such as SEND are only available in IPv6 and add
new security features (securing link access for SEND) not available in IPv4.

After an initial period of fixing bugs in the new implementation and flaws in the new
protocol, IPv6 is becoming more secure than IPv4. The community should have learned to
make protocols and implementations more secure.

13.8 Configuring Security on Hosts and Routers

This section describes how to configure temporary addresses, filtering, IPsec and SSH on
various implementations.

13.8.1 FreeBSD

FreeBSD supports temporary addresses, filtering through various tools, IPsec and SSH.

13.8.1.1 Temporary Addresses

To enable temporary addresses, the sysctl variable net.inet6.ip6. use_
tempaddr is used.

# sysctl net.inet6.ip6.use_tempaddr = 1

13.8.1.2 Filtering

There are various filtering/firewall softwares available on FreeBSD, such as ipfw and ipfilter.
IPfilter is discussed here.
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IPfilter [IPFILTER] has supported IPv6 since version 3.4. The most noticeable impact is
when an address is expected in the config file, it could be either IPv4 or IPv6. The example
below shows the blocking of any traffic coming from a 2002:: address.

# more /etc/ipf.rules
block in on fxp0 from 2002::/16 to any

As with IPfilter 4.0beta, it also supports the keywords shown in Table 13.5.

13.8.1.3 IPsec

IPsec is available for IPv4 and IPv6 in FreeBSD. The code is from the Kame stack. To
enable IPsec, the kernel must be compiled with the IPSEC and IPSEC_ESP options, as
shown below.

# more /usr/src/sys/i386/conf/MYKERNEL
options IPSEC
options IPSEC_ESP

The setkey command is used to manipulate the security association (SA) and security
policy database(SPD) of IPsec in the kernel. The default configuration file read by setkey
at boot time is /etc/ipsec.conf. To enable IPsec at boot time, set the ipsec_enable
to ‘YES’ in the /etc/rc.conf file.

# more /etc/rc.conf
ipsec_enable="YES"

The /etc/ipsec.conf configuration file contains the setkey operations to make an
IPsec tunnel. Manual keying is all done through setkey, while automatic keying (IKE) is
done by the racoon daemon, available in the ports/security.

The following example shows a static IPsec tunnel between two IPv6 hosts, using the
3des-cbc crypto algorithm and the ‘thisisaverysecretkey’ secret key. The first
host (3ffe:b00:1:1::1) has the following configuration:

# more /etc/ipsec.conf
add 3ffe:b00:1:1::1 3ffe:b00:1:2::2 esp 9998 -E 3des-cbc "
thisisaverysecretkey" ;
add 3ffe:b00:1:2::2 3ffe:b00:1:1::1 esp 9999 -E 3des-cbc "
thisisaverysecretkey" ;
spadd 3ffe:b00:1:1::1 3ffe:b00:1:2::2 any -P out ipsec
esp/transport//use;

Table 13.5 IPfilter IPv6 keywords

Keyword Description

dstopts Destination Options extension headers
hopopts Hop-by-hop options extension headers
v6hdrs IPv6 header
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The add commands create the security associations for both sides. Each security asso-
ciation has a different number, called the security parameter index, which is arbitrarily
chosen and must be unique within a node and synchronized with the other peer. The spadd
command creates the security policy to initiate the IPsec tunneling between the two peers.

The other peer (3ffe:b00:1:2::2) has the following configuration:

# more /etc/ipsec.conf
add 3ffe:b00:1:1::1 3ffe:b00:1:2::2 esp 9998 -E 3des-cbc "
thisisaverysecretkey" ;
add 3ffe:b00:1:2::2 3ffe:b00:1:1::1 esp 9999 -E 3des-cbc "
thisisaverysecretkey" ;
spadd 3ffe:b00:1:2::2 3ffe:b00:1:1::1 any -P out ipsec
esp/transport//use;

As soon as the config file is executed by setkey, the kernel is configured for that security
association, and any traffic going to the other peer will use the IPsec tunnel.

13.8.1.4 SSH

SSH supports IPv6 by default. If the SSH server is known in the DNS with a AAAA record,
then the SSH client tries to connect to that address. The –6 and –4 options in the command
line forces the use of IPv6 or IPv4 respectively.

13.8.2 Windows

Windows XP supports temporary addresses. Service Pack 2 (SP2) includes an IPv6 firewall.

13.8.2.1 Privacy/Temporary Addresses

Temporary addresses can be enabled by setting the ‘privacy state’ variable.

C> netsh interface ipv6 set privacy state=enabled

13.8.3 Cisco

Cisco IOS supports IPv6 filtering and SSH.

13.8.3.1 Filtering

IOS can filter the following fields in the IPv6 packet: source and destination address,
transport protocol source and destination port, diffserv codepoints, ICMP types, flow label
and presence of the routing or fragments header.
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The following example configures the ACL1 IPv6 access-list to accept any ICMP packet,
traffic to port 80, but denies anything else.

configure terminal
ipv6 access-list ACL1
permit icmp any any
permit tcp any any eq 80
deny ipv6 any any

13.8.3.2 SSH

The SSH client on Cisco IOS supports IPv6 transport.

ssh 3ffe:b00:0:1::2

13.8.4 Juniper

Juniper supports IPv6 filtering as shown below.

13.8.4.1 Filtering

Table 13.6 lists the fields of an IPv6 packet that can be filtered by JunOS.
An IPv6 filter is defined using the ‘family inet6’ statement under ‘firewall’.
The following example shows a filter F1 to discard IPv6 packets traversing the router

and going to node 3ffe:b00:0:4::b with a routing header (next header code = 43) as the first
next header in the packet. This filter is applied on input of the IPv6 traffic on the fe-0/0/1
interface.

firewall {
family inet6 {
filter F1 {
term F1-T1 {
from {
destination-address 3ffe:b00:0:4::b/128;

Table 13.6 JunOS filtering of IPv6 packet fields

IPv6 packet field JunOS match statement

Source and destination address address, source-address,
destination-address

Transport protocol source and destination port port, source-port, destination-port
Next header (the first one in the basic header) next-header
Traffic class traffic-class
ICMP type and code icmp-type, icmp-code
Packet length packet-length



252 Migrating to IPv6

next-header 43;
}
then {
discard;
}

}
}

}
}
interfaces {
fe-0/0/1 {
unit 0 {
family inet6 {
filter {
input F1;

}
}

}
}

}

Filtering IPv6 in IPv4 encapsulated packets is done on the IPv4 traffic by matching the
IP protocol field with the ‘protocol 41’ statement. The following example shows a filter
F2 to discard all IPv6 in IPv4 packets on input of interface fe-0/0/1.

firewall {
family inet {
filter F2 {
term F2-T1 {
from {
protocol 41;

}
then {
discard;

}
}

}
}

}
interfaces {
fe-0/0/1 {
unit 0 {
family inet {
filter {
input F2;

}
}

}
}

}
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13.9 Summary

IPv6 helps the deployment and management of IP security by mandating IPsec and through
the no-NAPT feature making it easier to deploy IPsec. IPv6 also has a temporary address
feature enabling anonymity when necessary. Threats on the local link are identified, a secure
enhancement of the neighbor discovery protocol is available making the IPv6 link more
secure than a IPv4 link. The IPv6 protocol suite uses more IPsec services, making the suite
more secure. IPv6 should be more secure than IPv4, however, there are advantages and
disadvantages and only time will tell if IPv6 is indeed more secure.
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14
Quality of Service

The ‘best effort’ delivery of packets is fundamental in the design of IP [Cerf and Kahn,
1974], which means variable delays and congestion losses on busy IP networks. Real-time
applications and guaranteed services require an extension of this best effort design to support
quality of service (QoS). QoS is often an overloaded keyword, but in this context can be
defined as: ‘any mechanism that provides distinction of traffic types, which can be classified
and administered differently throughout the network’ [Ferguson and Huston, 1998].

At the IP layer, three QoS frameworks are discussed in this chapter: IPv5, discussed
briefly for historical reasons, Differentiated Services and Integrated Services. IPv4 and IPv6
use the last two frameworks in the same way. Differences between IPv4 and IPv6 such as
flow label, network address translation and hardware processing are discussed.

This chapter is far from a comprehensive overview of QoS. The goal is to show the major
differences between the two IP version regarding QoS. For an excellent book on QoS, read
Quality of Service [Ferguson and Huston, 1998].

14.1 IPv5: Streaming Protocol

One QoS approach uses a different layer 3 protocol than IP, such as the Stream Protocol
(ST-2) [RFC1190]. This approach is a circuit-based protocol requiring a new layer 3 network
which would not be integrated with IP. This results in a new and parallel layer 3 network.
ST-2 uses the same IP framing so it uses the number 5 in the IP version, as shown in
Section 3.4.1, and is known as IPv5. IPv5 or ST is experimental and is not implemented nor
deployed.
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N1 N2

diffserv domain

R1 R2 R3

Figure 14.1 Diffserv domain example

14.2 Diffserv

Differentiated services (diffserv) [RFC2475] mark packets and have the routers in the network
make differences in their processing of these marked packets, known as per-hop behavior
(PHB). Diffserv packets are marked by setting some bits, called DS bits, in the TOS field of
the IPv4 header or in the Traffic Class field of the IPv6 header. Diffserv codepoints (DSCP)
are standardized [RFC2474] or of local domain specific definition.

The source node or a router at a network boundary marks the packets using a DSCP based
on a predefined QoS policy. An example of such a policy could be to mark the voice-over-IP
packets for high priority. The routers in the network, seeing this DSCP in the packets, process
the marked packets with higher priority.

As an example, in Figure 14.1, node N1 sends real-time traffic such as video to N2. Router
R1 marks the packets from N1 to N2 by putting a DSCP in the TOS field of the IPv4 header
if the packets are IPv4, or in the Traffic Class field of the IPv6 header if the packets are
IPv6. This DSCP maps to a per-hop behavior for high priority processing. R2 receives these
marked packets and processes them with high priority compared to non-marked packets. R3
proceeds similarly, but might clear the DSCP bits. N2 receives these marked packets before
any best-effort packets. This processing is identical for IPv4 or IPv6.

Important to remember:

Diffserv is identical in IPv4 or IPv6. Diffserv code points (DSCP) are put in the TOS
field of the IPv4 header or in the Traffic Class field of the IPv6 header.

Compared to integrated services described in the next section, diffserv does not require
any signaling or flow management. Diffserv is generally used more in the networks, because
it is easier to deploy than integrated services.

14.3 Integrated Services

The integrated services (intserv) model [RFC1633] is based on the use of resource reservation
and admission control to achieve QoS, in a guaranteed and predictive manner. The resource
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reservation protocol (RSVP) [RFC2210] is used to signal the QoS for the flow from the source
to the destination. Routers in the network maintain a per-flow state to achieve the reserved
resource properly. Admission control authenticates packets before receiving special router
treatment.

A flow identifies the packets to apply QoS processing. A flow is defined as a ‘distin-
guishable stream of related datagrams that results from a single user activity and requires
the same QoS’ [RFC1633].

Integrated services is implemented by having the source node start a RSVP reservation
through the path to the destination node. Along the path, each router processes this reserva-
tion. When reaching the destination, an acknowledgment is sent back on the reverse path to
the source node to confirm the reservation. This reservation specifies the flow to be processed
for some specified QoS level, such as high priority. When the packets of this specified flow
are sent from the source node, they are processed by each router in the same path with the
specified QoS level.

14.3.1 RSVP

The resource reservation protocol (RSVP) [RFC2205] is used to reserve the resource along
the path from the source to the destination of a flow that requires specific QoS.

Figure 14.2 shows an example where N1 is the receiver of the flow and N2 the transmitter.
The receiver N1 sends an RSVP request for QoS resource (the resv message) towards

N2. The packet includes a hop-by-hop extension header called Router Alert [RFC2711], as
discussed in Section 3.5.1.1. Each router in the path processes the RSVP request and reserves
the appropriate resource. N2 receives the packet and sends back a RSVP acknowledgment
(the path message) to N1. Then N2 can send traffic to N1 and the network (routers R1, R2,
R3 in the figure) has reserved the appropriate QoS, such as dedicated bandwidth.

An RSVP packet sent by N1 to N2 is illustrated in Table 14.1. The Next Header field in
the IPv6 basic header indicates, with a value of zero, a hop-by-hop option extension header
following the basic header. In this hop-by-hop option extension header, the Next Header
field indicates, with a value of 46, an RSVP message following the extension header. The
Option-Type field indicates a Router Alert. Router Alert means that every router receiving
this packet should look inside it.

2)

3)

N1
R1 R2 R3

1)

N2

rsvp request rsvp request

rsvp ack rsvp ack

rsvp request

rsvp ack

rsvp request

Packet flow with QoS processing along the path

rsvp ack

Figure 14.2 RSVP example
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Table 14.1 RSVP IPv6 packet

Name Value Description

IPv6 Basic Header
Version 6 = 6 for IPv6
Traffic Class 0 Diffserv and Explicit Congestion Notification

bits
Flow Label 0 Per-flow identification
Payload Length Size of the inner datagram (after the basic

header)
Next Header 0 Specifies a Hop-by-Hop Option Extension

Header to follow the IPv6 basic header
Hop Limit Maximum number of hops
Source Address <N1> N1 Source address
Destination Address <N2> N2 Destination address

Hop-by-Hop Option Extension Header
Next Header 46 RSVP message is following this extension

header
Extension Header Length 4 4 octets are included in this extension header
Option Type 5 5 = Router Alert. The first three bits of this

octet designate the type of option: all zeros
means if a router does not understand the
option, it must skip to the next header
and keep the option in the packet when
forwarding it.

Option Length 2 2 octets are following
Option Value 1 1 means this is a Router Alert for an RSVP

message

RSVP message following

While the actual reserved values are not really useful (unless you are a developer or are
sniffing the traffic with a raw sniffer), this packet structure shows the user many features of
the IPv6 header, such as chaining of extension headers, use of Next Header to designate the
next payload type, hop-by-hop options and options type.

In the reservation setup, the flow is identified by destination address, IP protocol and
destination transport port. Each router must then open each packet up to the transport port
in order to apply the reserved QoS. This is more demanding for routers to accomplish than
just normal forwarding.

The transport port used to specify the flow might not be precise enough for flows. For
example, during a multimedia session between N1 and N2, multiple transport ports might be
used, which would each require a new reservation setup. Instead, if the source of the flow
marks the packets related to the flow, and if this marker is sent in the RSVP messages to
the routers in the network, then the routers will only have to look at this marker to apply the
reserved QoS on the flow, making the QoS processing efficient. This marker, named flow
label, only exists in IPv6.
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14.3.2 Flow Label

The Integrated Services (IS) model classifies the packets by looking at addresses and port
numbers in the packets. Often, the routers have to look inside the application protocol payload
to identify the flows. This makes the router implementation more complex, thus potentially
slower. Moreover, the port numbers might be hidden because of the use of encryption or
fragmentation.

If the source node identifies the flow by some label before it reaches the network, then
the routers do not need to open the packet to find the flow. Hence, it eases the classification
and processing of flows in the routers. The IPv6 flow label is designed for that purpose and
was suggested as part of the IS architecture.

The flow label field in the IPv6 header is 20 bits long, as described in Section 3.4.3 and
shown gray in Figure 14.3.

The value of all zeros does not identify a flow [RFC3697]. Any non-zero value is
not currently assigned: all non-zero values have no specific meaning. The current default
behavior for source nodes is to assign a flow label not already in use by itself. If using
integrated services, then the source node also signals this flow label to the network using
some reservation protocol such as RSVP. Then the source sends all packets related to this
flow with the flow label in the IPv6 header set to the previously assigned flow label.

20 bits

32 bits
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Payload Length Next Header Hop Limit

Source Address

IP
v6
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ea
de
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Destination Address

Extension Headers

Data

Figure 14.3 Flow label in the IPv6 basic header
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14.4 Network Address Translation

As discussed in this chapter, QoS is applied using the IP addresses and port numbers, unless
the IPv6 flow label is used. IPv4 network address translation (NAT) changes the source
address and the source port of the packets. Therefore, NAT creates an artificial boundary by
disabling the use of QoS across NAT. Since IPv6 has no NAT, thase artificial boundaries
do not exist and QoS can be applied to larger domains than in IPv4.

14.5 Hardware processing

To apply QoS in traditional IPv4 techniques, a router has to look at the transport port number.
As shown in Figure 14.4, the IPv4 header contains the header length (HL) which includes
the options in the calculation [RFC791], and the transport protocol (Protocol).

The header length defines the start of the transport protocol header and the transport proto-
col (TCP or UDP) number locates the transport protocol number inside the transport header.
These two values enable a fast lookup of the transport port number in the transport header.
UDP and TCP both have the source and destination port at the beginning of the transport
header. With or without options, the lookup of the transport port numbers can be done
efficiently in hardware.

In the IPv6 packet header, there is no header length field. The payload length gives the
length of the total packet, including basic header, extension headers, transport header, and
application data, as shown in Figure 14.5.

The transport protocol number is in the next header field in the basic IPv6 header if
no extension header is used. If extension headers are used, as shown in Figure 14.5, the
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Figure 14.4 IPv4 header with transport ports
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Figure 14.5 IPv6 header with ports

transport protocol number is in the next header field of the last extension header of the
daisy-chain. If no extension headers are used, the lookup is as efficient as in IPv4. However,
if extension headers are used, the router has to parse the daisy-chain of extension headers
to find the start of the transport protocol header. This additional processing is less efficient
and may impact QoS performance based on transport ports when extension headers are used.
Extension headers, however, are seldom used. To avoid this impact, the use of the IPv6 flow
label should be considered.

14.6 Configuring QoS on Hosts and Routers

This section describes the specific commands for the IPv6 flow label.

14.6.1 FreeBSD

The Kame stack automatically assigns a new flow label for every new flow.
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14.6.2 Linux

Ping has the -F option to set the flow label to a value, useful for testing the behavior of
the routers in the network processing the flow label. The following example sends ICMP
packets where the flow label is set to 1.

# ping6 -F 1 3ffe:b00:0:1::2

14.6.3 Solaris

Ping has the -F option to set the flow label to a value, useful for testing the behavior of
the routers in the network processing the flow label. The following example sends ICMP
packets where the flow label is set to 1.

# ping -F 1 3ffe:b00:0:1::2

Similarly, traceroute has the -L option to set the flow label to a value. The following
example has traceroute use the flow label set to 1.

# traceroute -L 1 3ffe:b00:0:1::2

14.6.4 Cisco

Cisco IOS implementation enables the use of access-lists to be triggered by a specific flow
label. Any IOS service using an access-list for filtering can apply specific processing for
IPv6 flow labels.

The following example defines an access-list named flow1 triggered by the flow
label value of 1 of any IPv6 packets.

configure terminal
ipv6 access-list flow1

permit ipv6 any any flow-label 1

14.7 Summary

Quality of service is defined as ‘any mechanism that provides distinction of traffic types,
which can be classified and administered differently throughout the network’ [Ferguson and
Huston, 1998]. Three frameworks are presented: IPv5, diffserv and intserv. While diffserv
and intserv are done similarly in IPv4 and IPv6, a few differences exist: the use of the IPv6
flow label, network address translation and hardware processing issues. The IPv6 flow label
promises better flow processing where implemented.
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15
Multicast and Anycast

Multicast is a special addressing scheme with signaling protocols that enables efficient
transmission of packets to groups of nodes. This chapter describes the basics of multicast,
the multicast listener discovery protocol, the mechanisms to join and leave a multicast group
and multicast routing, within the context of IPv6. After that, anycast is described.

As an aside, the inventor of Multicast, Steve Deering, is also the co-inventor of IPv6.

15.1 Multicast Basics

IPv6 Multicast is first used for efficiency of basic IPv6 functions on the local link, such as
neighbor discovery. This is accomplished by the senders sending to a multicast destination
address and the receivers listening to that address. This works without any other special
mechanism, such as multicast routing.

However, multicast is also used across links where a source of traffic sends a datagram to
an arbitrary number of nodes in the most efficient way: the multicast routing takes care of
sending only one datagram on each link that contains at least one listener for that multicast
group. A group is identified by a unique multicast address.

Figure 15.1 shows an example. The node S is the source of the traffic. Nodes A, B, C and
D are listeners. Using unicast, S must send four copies of the each datagram, one addressed
to each node.

If the routers in the path are multicast-enabled, then the source sends one copy of the
datagrams to a multicast address, the nodes listen to that address and the routers forward
only one copy of the datagram to the links where there is at least one listener. If a link
contains no listener, no traffic is forwarded, as shown in Figure 15.2.

However, the multicast-enabled routers, called simply routers for the rest of this chapter,
have to find if there is at least one listener on each of their connected links. For each multicast
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Figure 15.2 Source sending multicast

group, they do not need to know how many listeners or who they are: they only need to
know that at least one is listening. IPv4 nodes and routers use Internet Group Management
Protocol (IGMP) to register the presence of multicast listeners on a link. IPv6 uses Multicast
Listener Discovery (MLD) for the same purposes.



Multicast and Anycast 267

Routing multicast datagrams between routers is handled by specific multicast routing
protocols, discussed in Section 15.3.

15.2 Multicast Listener Discovery

Multicast Listener Discovery (MLD) [RFC2710] is used by nodes and routers to inform
routers of the existence of at least one listener for each multicast group.

MLD is very similar to IGMPv2 [RFC2236]. The important difference is that MLD uses
ICMP as the transport protocol, so MLD messages are ICMP datagrams. The source address
of MLD messages is always a link-local address.

MLD datagrams have a special use of two IP header fields: the Hop Limit and Router
Alert extension header. Since MLD interaction is only between the nodes and their directly
connected routers, all MLD datagrams have the IP header Hop Limit field equal to 1, so
these datagrams will not be forwarded by routers.

A router manages all possible multicast groups. Instead of listening to all possible groups
by default, all MLD messages use the Router Alert hop-by-hop extension header, which tells
routers specifically to look at the datagram, as described in Section 3.5.1.

15.2.1 Node Joining a Multicast Group

When a node wants to join a multicast group, it sends a message to the routers on its link
reporting that it is joining a specific multicast group. The message is a MLD Report message
containing the address of the multicast group and sent to that address of the multicast group,
as described in Table 15.1. Although, routers do not necessarily listen to all possible multicast
addresses, they do process the datagram because they are configured to listen to all multicast
link-layer addresses and because the IP header has the Router Alert option.

If the router does not have that multicast group in its multicast forwarding table, then
it pushes the request to the multicast routing engine in order to receive and forward the
datagrams for that group. If the router already forwards the group traffic, then it does nothing
except resetting an internal timer. All routers on the link do the same processing for the
MLD report message.

The node resends the report periodically, unless it receives the same report from another
node. Since the destination address of the MLD report is the address of the multicast group,
then all nodes listening to that group receive that message.

Table 15.1 Node joining a group

From → To Type of MLD
datagram

Source and destination
addresses

Description and content

1 Node → Routers Report Src: node link-local
Dst: the joining
multicast group address
Hop limit = 1
Router Alert option

The node tells the routers that it
is joining a multicast group.
The address of the group is
contained in the MLD datagram.
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MLD is designed to send messages efficiently, only when necessary. Recall that the only
purpose of MLD is to inform routers of the existence of at least one listener for each multicast
group. If a report was recently sent to a multicast group, then there is no need to resend the
same report, even from a different node, since the router knows that at least one node is
listening. So the other nodes will not resend the same report.

15.2.2 Node Leaving a Multicast Group

When a node wants to leave a multicast group, it sends a MLD Done message to the link-
local all-routers multicast address, as described in Table 15.2. Since the routers need to find
if this node is the last listener leaving, one of the routers, the elected router (Section 15.2.4),
will send a MLD query message to all listening nodes to that multicast address on the link,
asking them to send a report. If none sends a report, then the Done message was from the
last listener and the routers will cease forwarding the traffic for that multicast group.

The usefulness of the Done message is that the router stops forwarding the datagrams for
that group. This happens only when the last member leaves the group. If a leaving node
recently received a Report message for the same multicast group it wants to leave, then it
may not send Done message, since it is obviously not the last member of that group on the
link.

15.2.3 Router Verifying Group Membership

Routers have to make sure that there is at least one listener for each multicast group to
which they are forwarding the traffic. It is possible that listeners do not send Done messages
because of accidental reboots, link failures or something else. As described in Table 15.3,
the routers periodically verify the group membership by sending a MLD General Query
message asking all nodes to report all multicast groups to which they are listening.

Table 15.2 Node leaving a group

From → To Type of MLD
datagram

Source and destination
addresses

Description and content

1 Node →
Routers

Done Src: node link-local
Dst: link-local all-routers
multicast (FF02::2)
Hop limit = 1
Router Alert option

The node tells the routers that
it is leaving a specific
multicast group. The address
of the group is contained in
the MLD datagram.

2 Elected Router
→ all nodes
listening to the
multicast group

Multicast-
Address-Specific
Query

Src: elected router
link-local
Dst: the leaving multicast
group address
Hop limit = 1

Router verifies that this node
is the last one by requesting a
report to all nodes listening to
that multicast group. If no
report is received, then all
routers delete this multicast
group from their multicast
forwarding table.
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Table 15.3 Periodic verification of group membership

From → To Type of MLD
datagram

Source and destination
addresses

Description and content

1 Elected router
→ All nodes

General Query Src: client link-local
Dst: all-nodes link-local:
FF02::1
Hop limit = 1
Router Alert option

The elected router is asking
all nodes to report their
memberships for all multicast
groups.

2 Every node for
every joined
multicast group
→ All routers

Report Src: node link-local
Dst: the joining multicast
group address
Hop limit = 1

Each node sends a specific
report datagram for every
joined multicast group. A
randomized interval is used
between reports of a node.

However, this query could result in flooding the network with administrative messages of
multiple queries and reports. To avoid multiple queries from all routers on the link, only the
elected router, described in Section 15.2.4, sends that General Query message. To avoid the
same reports for the same multicast group from all listeners, reports are sent to the multicast
group address, so all other listeners receive it and decide not to send the same report since
it was just sent.

When a router boots, it starts as an elected router and sends a General Query message so
it can quickly collect the membership of all groups.

15.2.4 Electing a Router

The only purpose of an elected router is to minimize the number of queries sent on the
link. The elected router is the only multicast router to send the queries. Recall that all MLD
messages are received and processed by all routers, both non-elected and elected.

The election mechanism is simple: when the current elected router receives a query from
another router whose IPv6 link-local address is lower, then the elected router become a
non-elected router and the other router becomes the elected router. The decision of using the
lower address is essentially arbitrary: the only important thing is to have a decision criteria
that all routers can do locally based on the information they have.

The process of electing a router should be fault-tolerant so that if the elected router
disappears suddenly, another router takes the task. An internal timer in each router triggers
a self-election if no elected router has been heard after some delay. When a router boots, it
starts in the elected mode, so any link has one elected router.

15.2.5 Multicast Listener Discovery Version 2

A new version of MLD, called MLDv2 [RFC3810] is synched with the new version of IPv4
IGMP, IGMPv3 [RFC3376]. This adds the ability for listeners to request multicast group
traffic only from some specific source addresses. By default, a listener to a multicast group
will receive the traffic from all sources for that group.
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15.3 Multicast Routing

Many multicast routing protocols have been defined: Distance Vector Multicast Routing
Protocol (DVMRP), Multicast OSPF (MOSPF), Protocol Independent Multicast (PIM) and
Multicast BGP, among others.

DVMRP [RFC1075] does not support IPv6. The original MOSPF [RFC1584] is based on
OSPFv2 [RFC2328] which only supports IPv4. However, OSPFv3 [RFC2740], as discussed
in Section 9.6, supports IPv6 and multicast extensions for IPv6. PIM-SM [RFC2362] supports
IPv6 since it is protocol-independent.

These multicast routing protocols are used between routers to control the forwarding of
the multicast traffic only where there are listeners. For example, OSPFv3 maintains a link
state database for normal IP routing. The multicast members are pinpointed in the database.
A tree is constructed using the shortest path for any multicast group. All links without
listeners for a particular group will be pruned from the tree. In Figure 15.2, all links except
the one between R4 and R5 will be in the tree. Note that a tree is specific to, and constructed
for, a multicast group. The MLD membership messages, Report and Done, are used to tell
the multicast routing infrastructure the location of the listeners so the routing infrastruc-
ture constructs the trees and forwards the groups traffic to the links where listeners are
present.

15.4 Multicast Address Allocation

Section 4.4 describes the basic multicast address structure, as shown in Figure 15.3.
In this basic address structure, the multicast group identifier is 112 bits long. However,

for allocation of multicast groups, only the last 32 bits are used [RFC3513], as shown in
Figure 15.4.

The last 32 bit group identifier maps directly to the 32 bit IEEE 802 link layer multicast
addresses, as discussed in Section 6.6.2.

16 112

FF L S Multicast Group Identifier

Figure 15.3 Multicast address structure

16

FF L S 0

80 32

Group Identifier

Figure 15.4 Allocation of group addresses
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15.5 Unicast based Multicast Addressing

Allocating multicast groups to connected domains needs synchronization: a group number
used in one domain cannot be used in another connected domain. In IPv4, multicast address
allocation protocols [RFC2909] are designed to manage this task.

Given the large address space in IPv6, the allocation [RFC3306] is based on the unicast
prefix owned by a domain, which enables unique multicast address allocation. The intention
is to localize the allocation of multicast addresses inside a network, without having to take
care of the outside allocation. The prefix of the network is embedded inside the multicast
address structure in the 80 bits left. This makes the last 32 bit group identifier local to the
prefix being used. The prefix may be of any length (for a network, which means length ≤ 64)
so the multicast group may be local to a subnet, to a site, or even to a large provider
network.

The new structure of the multicast address is shown in Figure 15.5. The prefix length (PL)
field is 8 bits and contains the length of the prefix embedded in the next 64 bits.

To distinguish between these multicast addresses and the usual ones, the third bit in the
L field is used. The value of one (1) means that the multicast address contains a prefix-
based structure. The new possible values for the L field bits are described in Table 15.4 (an
extension of Table 4.6).

Note that value 2 is prohibited, since a group using the prefix-based structure must be
temporary.

15.6 Allocation of Multicast Addresses

Allocation guidelines [RFC3307] are available to help network managers allocate multi-
cast group addresses. The use of random group identifiers for temporary groups is rec-
ommended to decrease the chance of choosing the same group identifier for different
groups.

16 64

Prefix Group IdentifierPL0SLFF

328 8

Figure 15.5 Allocation of group addresses based on prefix

Table 15.4 L bits in a multicast address

Value of L (4 bits binary) Value of L (4 bits hex) Description

0000 0 Permanent group
0001 1 Temporary group not based on network prefix
0011 3 Temporary group based on network prefix
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Table 15.5 Decomposition of a prefix-based group address

Value Description

ff Multicast prefix
3 Temporary group based on network prefix (see Table 4.6)
5: Site scope
00 Reserved field to 0
30: Prefix length (/48) of the site, expressed in hexadecimal
3ffe:b00:0001:0000: Site prefix padded with 0 up to 64 bits
6f3b:1148 Group identifier randomly generated

If one manages a site network with the 3ffe:b00:1::/48 prefix and wants to setup
an internal (site-scoped) multicast channel for broadcasting a videoconference, then one
could use the prefix-based structure of multicast addresses, as shown in Section 15.5.
If the 32 bit group identifier is randomly chosen as 6f3b1148, then the full multicast
address of this group would be: ff35:0030:3ffe:b00:0001:0000:6f3b:1148, as decomposed in
Table 15.5.

15.7 Multicast Reserved Addresses

Table 15.6 lists some multicast reserved addresses, extracted from the specification
[RFC2375]. IANA maintains a list of reserved multicast addresses [IANA, 2004].

Table 15.6 Multicast Reserved Addresses

Address Scope Description

FF01:0:0:0:0:0:0:1 Interface All interfaces on the node
FF01:0:0:0:0:0:0:2 Interface All routers on the node
FF02:0:0:0:0:0:0:1 Link All nodes on the link
FF02:0:0:0:0:0:0:2 Link All routers on the link
FF02:0:0:0:0:0:0:4 Link DVMRP routers
FF02:0:0:0:0:0:0:5 Link OSFP routers
FF02:0:0:0:0:0:0:6 Link OSPF designated routers
FF02:0:0:0:0:0:0:9 Link RIP routers
FF02:0:0:0:0:0:0:B Link MobileIP agents
FF02:0:0:0:0:0:0:D Link PIM routers
FF02:0:0:0:0:0:1:2 Link DHCP agents
FF02:0:0:0:0:1:FFXX:XXXX Link Solicited-node
FF05:0:0:0:0:0:0:2 Site Routers on the site
FF05:0:0:0:0:0:1:3 Site DHCP servers on the site
FF05:0:0:0:0:0:1:4 Site DHCP agents on the site
FF05:0:0:0:0:0:1:1000-13FF Site Service location
FF0X:0:0:0:0:0:0:101 Any Network Time Protocol
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15.8 Anycast

Anycast enables sending a datagram to one node belonging to a group of nodes. The routing
identifies the nearest node in the group that will receive the datagram, based on the routing
metrics. Anycast has been defined for IPv4 [RFC1546] but its use is limited.

An anycast address is the same unicast address configured on multiple nodes. The address
is also configured on the routers as a host route (a full /128 IPv6 route) so the routers on the
network will deliver the datagram to the nearest node that is member of the anycast group.
The choice of the anycast address is arbitrary.

An anycast address can be used for any size of networks: a site, a link, an organization,
etc. The host route must be injected in the network supporting the anycast address.

Figure 15.6 shows an example of a network with two DNS servers, S1 and S2. They
are configured with the same anycast address (3ffe:b00:1::2)1 and both answer DNS queries
sent to that IP address. These servers are located in different locations in order to provide
redundancy and best performance.

The clients, A and B, send their queries to the anycast address, 3ffe:b00:1::2, and the
border routers of the site, R1 and R2, have in their routing table a /128 route for 3ffe:b00:1::2
which points to S1 and S2. The datagram always reaches the nearest server. However, if
the S1 server is down, as shown in Figure 15.7, then the routing entry for that server is
withdrawn and the routers, R1 and R2, forward to the other server (S2).

A mechanism has to be used between the host S1 and its routers to register and withdraw
the host route for S1. A proposal is based on an extension of the Multicast Listener Discovery
protocol [Haberman and Thaler, 2002] where the host sends an MLD Report message to the
routers on the link informing that it is subscribing to the anycast group.

The anycast mechanism is used for the discovery of services on a network. MobileIPv6,
described in Section 11.10.2, defines a reserved anycast group address [RFC2526] identifying

A

S2

R2

R1
S1

3ffe:ffff:1::2

3ffe:ffff:1::2

B

Figure 15.6 Servers with an anycast address

1 The anycast address is in addition to the host’s primary address.
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A

S2

R2

R1
S1

3ffe:ffff:1::2

3ffe:ffff:1::2

B

Figure 15.7 Redundancy with an anycast address

Mobile node

Dstadd=
3ffe:ffff:1:1:dfff:ffff:ffff:fffe

3ffe:ffff:1:1::/64

R2 R1

Figure 15.8 MobileIP home agent discovery anycast address

home-agents on a subnet, as dfff:ffff:ffff:fffe for the last 64 bits. When a mobile node is away
from its home network and its home agent disappeared, the mobile node has to discover other
home agents on its home subnet. Figure 15.8 shows an example with the 3ffe:b00:1:1::/64
home prefix.

The mobile node sends a home agent discovery request message to the home agent anycast
group address of its home subnet, 3ffe:b00:1:1:dfff:ffff:ffff:fffe. One of the home agents will
reply to the mobile node with a list of available home agents on the link.

Anycast needs further work [Hagino and Ettikan, 2001] and is currently restricted in its
use [RFC3513]. A list of reserved anycast addresses is available [IANA, 1999].
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15.9 Configuring Anycast and Multicast on Hosts and Routers

This section describes the configuration of anycast and multicast on some host and router
implementations.

15.9.1 FreeBSD

To configure the 3ffe:b00:1:1::1 anycast address on an interface, use the anycast parameter
on ifconfig.

# ifconfig fxp0 3ffe:b00:1:1::1 anycast

To see the multicast groups to which a FreeBSD node is subscribed, use the ifmcstat
command, netstat -ain or netstat -g.

# ifmcstat
# netstat -ian
# netstat -g

15.9.2 Linux
Use the -g flag in netstat to see the multicast groups in Linux.

# netstat -g

15.9.3 Solaris

Use the -g flag in netstat to see the multicast groups in Solaris.

# netstat -g

15.10 Summary

Multicast is more efficient in IPv6, with larger allocation space, better handling of scope and
local allocation of group addresses. Anycast is used to enable load balancing, fault tolerance
and performance. It is achieved as a host route in the routing realm.
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16
Deploying IPv6 in IPv4 Dominant
Networks

Current networks are dominated by the IPv4 protocol. IPv6 can be deployed:

1. together with the IPv4 protocol;
2. tunneled in IPv4;
3. in parallel with or separated from the IPv4 network;
4. or as a new network without IPv4.

The third case is discussed in Chapter 17. Combining IPv4 and IPv6 in a single network
is discussed in Section 16.1, while the rest of this chapter discusses the various approaches
available for tunneling IPv6 in IPv4.

This chapter describes many techniques in detail, but most sections are independent and
links between them are provided. The reader can skip the sections that are of less interest.

16.1 Combined IPv4 and IPv6 Network

The primary migration strategy [RFC2893] is to have all nodes as dual-stack, which means
they support IPv4 and IPv6 at the same time. The applications are supporting both protocols
and the network is routing both protocols.

When starting a new connection, an application on a dual-stack node chooses the IP
protocol based on the responses from the DNS. When an application is resolving a name to
an IP address, the following happens:

• If the DNS response contains only an IPv4 address, then the source node will use IPv4.
• If the DNS response contains only an IPv6 address, then the source node will use IPv6.
• If the DNS response contains both IPv4 and IPv6 addresses, then the source node will use

one or the other depending on its configuration, as discussed in Section 8.6.

Migrating to IPv6: A Practical Guide to Implementing IPv6 in Mobile and Fixed Networks Marc Blanchet
© 2006 John Wiley & Sons, Ltd
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Figure 16.1 Combined IPv6 and IPv4 network

Not only are the nodes dual-stack, but there should be some IPv6 network between any two
IPv6 nodes. The IPv6 network could be run together with IPv4, meaning that the routers are
dual-stack, they forward both IPv4 and IPv6 datagrams on their interfaces and they run IPv4
and IPv6 routing protocols, as shown in Figure 16.1.

This is similar to the days when corporate networks were running the Novell IPX protocol
together with the IPv4 protocol. Some care should be taken with routing protocols, as
discussed in Chapter 9. Deployment scenarios of combined IP protocols are discussed in
Chapter 23.

16.2 Tunneling IPv6 in IPv4

It is sometimes difficult to deploy a fully combined IPv6/IPv4 network, for example, because
of old routers that do not have enough memory to run the latest releases of their operating
system which includes IPv6. In that context, part of a network might be IPv6/IPv4 and other
parts might be IPv4-only.

The tunneling technique is often used to overlay a new protocol over a legacy one. IPX
datagrams were often encapsulated in IPv4 datagrams over IPv4-only backbones. The same
technique is used to encapsulate IPv6 datagrams over an IPv4 network.

16.2.1 Encapsulation

The encapsulation of IPv6 datagrams over an IPv4 network [RFC2473] uses the IPv4 protocol
number 41. The encapsulation node can be either a host or a router and the decapsulation
node can be either a host or a router as well.

The IPv6 datagram is put inside the payload of an IPv4 datagram, as shown in Figure 16.2.
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Figure 16.2 Encapsulation of an IPv6 datagram in an IPv4 datagram

The IPv4 source and destination addresses of the IPv4 datagram are the addresses of the
encapsulation and decapsulation node, which may or may not be the source and destination
of the IPv6 datagram.

16.2.2 Host to Router Encapsulation

Figure 16.3 shows an example where node A is dual-stack and wants to send an IPv6
datagram to an IPv6-only node B. Node A is manually configured to send all IPv6 datagrams
within an IPv6-in-IPv4 tunnel to the R1 router.

As described in Table 16.1, source node A internally makes an IPv6 datagram for the
destination node B (step 1 in Table 16.1). The source address of the IPv6 datagram is A’s
address (3ffe:b00:a:1::1) and the destination address is B’s address (3ffe:b00:a:3::2). This
IPv6 datagram is not sent on the wire, but instead it is encapsulated inside an IPv4 datagram
by A (step 2), since A is configured to send all IPv6 traffic encapsulated to the R1 router.

IPv4 = 192.168.1.1

IPv6 = 3ffe:b00:a:1::1

IPv4 = 192.168.2.1

3ffe:b00:a:5::1 3ffe:b00:a:3::2

Dst = 3ffe:b00:a:3::2
Src = 3ffe:b00:a:1::1
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header
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IPv6
data

IPv6
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IPv6
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Dst = 3ffe:b00:a:3::2
Src = 3ffe:b00:a:1::1Src = 192.168.1.1

Dst = 192.168.2.1

IPv6 = 3ffe:b00:a:1::2

Figure 16.3 IPv6 over IPv4 tunnel from host to router
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Table 16.1 IPv6 over IPv4 tunnel from host to router

Step IPv4 addresses IPv6 addresses Description

1 None Src = A = 3ffe:b00:a:1::1
Dst = B = 3ffe:b00:a:3::2

Source A internally makes
an IPv6 datagram for the
destination node B. This
datagram is still inside the A IP
stack.

2 Src = A = 192.168.1.1
Dst = R1 = 192.168.2.1

Source A encapsulates the IPv6
datagram into the payload of the
IPv4 datagram. Destination of
the IPv4 datagram is the end of
the tunnel, R1.

3 Src = A = 192.168.1.1
Dst = R1 = 192.168.2.1

IPv4 datagram travels on the
IPv4 network. R1 receives the
encapsulated IPv4 datagram.

4 Src = A = 3ffe:b00:a:1::1
Dst = B = 3ffe:b00:a:3::2

R1 removes the IPv4 header
and sends the IPv6 original
datagram on its IPv6 network.
Destination of the IPv6
datagram is B.

5 Src = A = 3ffe:b00:a:1::1
Dst = B = 3ffe:b00:a:3::2

Destination B receives the
datagram.

The source of the IPv4 datagram is the A IPv4 address (192.168.1.1) and the destination
address is the R1 IPv4 address (192.168.2.1). The payload of the IPv4 datagram contains
the IPv6 datagram as illustrated in Figure 16.2.

R1 receives the IPv4 datagram (step 3), removes the IPv4 header and pulls the original
IPv6 datagram. R1 forwards the IPv6 datagram (step 4) on its IPv6 network to the desti-
nation B, since the destination address of the decapsulated IPv6 datagram is B’s address
(3ffe:b00:a:3::2). Destination B receives the IPv6 datagram (step 5).

B has no clue that the datagram was encapsulated over some parts of the path.

16.2.3 Router to Router Encapsulation

Figure 16.4 shows an example where nodes A and B are IPv6 nodes and the tunnel is done
by the border routers.

In this case, the source node A behaves as a normal IPv6 node and has no configured
tunnel. However, R2 is dual-stack and has a configured tunnel with R1.

As described in Table 16.2, node A sends the IPv6 datagram on its IPv6 network. The
source address is A’s address (3ffe:b00:a:1::1) and the destination address is B’s address
(3ffe:b00:a:3::2). The IPv6 datagram is forwarded to the R2 router which has a route to the
destination network through the tunnel to R1. R2 encapsulates the IPv6 datagram in an IPv4
datagram with the IPv4 source address being R2’s address (192.168.1.1) and destination
address being R1’s address (192.168.2.1).

A and B have no clue that the datagram was encapsulated over some parts of the path.
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Figure 16.4 IPv6 over IPv4 tunnel between two routers

Table 16.2 IPv6 over IPv4 tunnel between two routers

Step IPv4 addresses IPv6 addresses Description

1 None Src = A = 3ffe:b00:a:1::1
Dst = B = 3ffe:b00:a:3::2

Source A makes an IPv6
datagram for the destination
node B.

2 None Src = A = 3ffe:b00:a:1::1
Dst = B = 3ffe:b00:a:3::2

IPv6 datagram travels on the
IPv6 network. Router R2
receives the IPv6 datagram
from A.

3 Src = R2 = 192.168.1.1
Dst = R1 = 192.168.2.1

R2 encapsulates the IPv6
datagram into the payload of the
IPv4 datagram. Destination of
the IPv4 datagram is the end of
the tunnel, R1.

4 Src = R2 = 192.168.1.1
Dst = R1 = 192.168.2.1

IPv4 datagram travels on the
IPv4 network. R1 receives the
encapsulated IPv4 datagram.

5 Src = A = 3ffe:b00:a:1::1
Dst = B = 3ffe:b00:a:3::2

R1 removes the IPv4 header
and sends the IPv6 original
datagram on its IPv6 network.
Destination of the IPv6
datagram is B.

6 Src = A = 3ffe:b00:a:1::1
Dst = B = 3ffe:b00:a:3::2

Destination B receives the IPv6
datagram.

16.2.4 Static Tunneling

Manual configuration of the source and destination IPv4 and IPv6 addresses on both endpoints
of the tunnel is required to make the tunnel work. Both endpoints have to be dual-stack.

In the second column of Table 16.3, the configuration data needed for router R2 in
Figure 16.5 are shown. The third column is for router R1.

Some implementations do not need the IPv6 destination address in the configuration,
since a tunnel is a point-to-point link and point-to-point links do not have to know the other
endpoint address. However, the IPv4 destination address is essential since it is the primary
information to forward the encapsulated datagram.
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Table 16.3 Configuration of tunnels for both endpoints

Configuration parameter Router R2 Router R1

IPv6 source address 3ffe:b00:1:1::1 3ffe:b00:1:1::2
IPv6 destination address 3ffe:b00:1:1::2 3ffe:b00:1:1::1
IPv4 source address 192.0.2.1 192.0.3.1
IPv4 destination address 192.0.3.1 192.0.2.1

3ffe:b00:1:1::1
192.0.2.1

3ffe:b00:1:1::2 
192.0.3.1

IPv4

IPv6IPv6 IPv6 in IPv4
R2 R1

Figure 16.5 Static tunnel between two routers

16.2.4.1 Requirements for Static Tunneling

The following requirements have to be met in this router to router configuration:

• Routers R1 and R2 are dual-stack.
• Router R1 has a reachable IPv4 address from R2, and vice-versa.

After configuring the two endpoints of the tunnel, routing, either static or dynamic, has
to be configured so the IPv6 traffic will go through the tunnel. Using Figure 16.5 as an
example, if R1 is connected to the IPv6 Internet, then R2 would have a static default IPv6
route pointing to the tunnel interface.

16.2.4.2 Limitations

Manual configuration of the tunnel endpoints is tedious

• if many tunnels have to be done;
• if the IP addresses are changing for many tunnels.

Static tunnels does not traverse IPv4 NAT, as discussed in Section 16.2.7.8.
IPv6 in IPv4 packets using protocol 41 might be filtered by security gateways: in this

case, the tunnel does not work, as discussed in Section 16.2.7.7.

16.2.4.3 Applicability

IPv6 in IPv4 static tunnels are applicable when a very small number of tunnels are needed
and no IPv4 NAT is present in the path.
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6to4, ISATAP, TSP tunnel broker and Teredo are mechanisms automating the creation of
tunnels. They are described in the next sections.

16.2.5 6to4

The 6to4 mechanism [RFC3056] builds IPv6 in IPv4 tunnels on demand and allocates IPv6
address space.

16.2.5.1 Addressing

The 6to4 IPv6 address space is built by the 2002::/16 prefix reserved for the 6to4 mechanism,
followed by the 32 bits of the IPv4 external address of the border router of the site, giving
the site a /48 prefix, as shown in Figure 16.6.

Figure 16.7 shows an example of an IPv6 site using the 6to4 mechanism.
The border router has an external IPv4 address (192.0.2.1). The IPv6 site behind the border

router uses 2002:c000:0201::/48 to number its whole network. The address space is based
on 2002:<ipv4 external address in hex>::/48, where the IPv4 address is the border router
external IPv4 address (192.0.2.1), represented in hexadecimal as c000:0201.

The 6to4 mechanism needs to be only implemented in border routers. Hosts inside the
IPv6 site do not need to support 6to4.

IPv4 external address
of the border router

2002

16 32

48

6416

Figure 16.6 6to4 address structure

192.0.2.1

6to4
IPv4IPv6

2002:c000:0201::/48

Figure 16.7 6to4 site address space based on the border router IPv4 address
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16.2.5.2 Router to Router Tunneling

Figure 16.8 shows an example of the 6to4 automatic tunneling process. Host A
(2002:c000:201:1::1) sends a packet to host B (2002:c000:301:2::2). The process is explained
in Table 16.4.

B’s reply packet will show the same behavior but in the reverse path.

16.2.5.3 Host to Router Tunneling

Similarly, a single host can use its IPv4 address and create the 6to4 /48 prefix for its own use.
Figure 16.9 shows the same process as above, but the host is 6to4 capable and encapsulates
the IPv6 traffic in the IPv4 packet to the router destination. The process is explained in
Table 16.5.

B’s reply packet will show the same behavior but in the reverse path.

16.2.5.4 Host to Host Tunneling

A host to host scenario works the same way, where the two hosts are 6to4 capable, as shown
in Figure 16.10. Both hosts encapsulate and decapsulate the packets before sending on the
wire.
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IPv6
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Src = 192.0.2.1
Dst = 192.0.3.1

Figure 16.8 6to4 router to router tunneling

Table 16.4 6to4 router to router tunneling process

Step Description

1 Host A sends an IPv6 datagram to host B whose address is 2002:c000:301:2::2.
2 When the 6to4 border router R1 receives the IPv6 datagram with the destination address

2002:c000:301:2::2, which starts with 2002, it extracts the IPv4 address in the 32 bits
following 2002 in the destination address(c000:0301 =>192.0.3.1), and then forwards the
IPv6 packet encapsulated in an IPv4 packet to R2 whose IPv4 address is 192.0.3.1. The
IPv4 source address of the encapsulated packet is R1 address (192.0.2.1).

3 R2 receives the IPv6 in IPv4 encapsulated packet, decapsulates it and forwards it to B.
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Figure 16.9 6to4 host to router tunneling

Table 16.5 6to4 host to router tunneling process

Step Description

1 Host A sends an IPv6 datagram to host B whose address is
2002:c000:301:2::2.

2 Host A is 6to4 enabled. When the internal stack processes the IPv6
datagram with the destination address 2002:c000:301:2::2, which
starts with 2002, it extracts the IPv4 address in the 32 bits following
2002 in the destination address �C000 �0301 => 192�0�3�1�, and
then forwards the IPv6 packet encapsulated in an IPv4 packet to R2
whose IPv4 address is 192.0.3.1. The IPv4 source address of the
encapsulated packet is A address (192.0.2.1).

3 R2 receives the encapsulated packet and then decapsulates it and
forwards it to B.
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Figure 16.10 6to4 Host to host tunneling
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16.2.5.5 6to4 Relay

Figure 16.11 shows communications between 6to4 sites.
If host A sends a packet to C with a non-6to4 address such as 3ffe:b00:1::1, the R1 router,

the border router of A’s site, does not know where to route the packet since the destination
address is not a 6to4 address. R1 needs a 6to4 relay to the non-6to4 IPv6 Internet.

A 6to4 relay is a 6to4 border router that has connectivity to the rest of the IPv6 networks.
It is used as a transit for the other 6to4 sites to reach the non-6to4 IPv6 networks.

In Figure 16.12, A sends a packet to C. R3 is the 6to4 relay for R1 and is connected to
the non-6to4 IPv6 Internet. When R1 wants to forward the packet to a non-6to4 destination
address (3ffe:b00:1::1), it cannot build an automatic tunnel to some other 6to4 router, since
it cannot extract the IPv4 address from the IPv6 destination address. If R1 has a default
route to go through R3 via the 6to4 mechanism, then R1 encapsulates the IPv6 packet to R3
and R3 decapsulates it and forwards it to the IPv6 network. R3 and the links between R3
and the non-6to4 IPv6 Internet are used as a transit network. In this context, there should
be some agreement between the 6to4 sites to use R3 as transit. As a counterpart, any 6to4
border router should be tightly configured with ingress filtering to avoid being used as a
transit for other 6to4 sites unless this is intended.

To enable the 6to4 relay, the 6to4 relay router is a 6to4 router with a default route to
the IPv6 Internet. The 6to4 relay should contain some ingress filtering. A 6to4 site that is
using a 6to4 relay installs in the 6to4 border router an IPv6 default route pointing to the
6to4 address of the relay. 6to4 relay routers do not require specific features to act as 6to4
relays, just a static route entry.
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Figure 16.11 6to4 sites without relay
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16.2.5.6 Discovery of 6to4 Relays

In the previous example, R1 has to be manually configured to have a default route pointing
to the R3 address. The 6to4 mechanism by itself does not depend on static information, but
the static route entry for the relay is static.

Anycast, discussed in Section 15.8., is used in a 6to4 additional mechanism [RFC3068]
to discover the 6to4 relay automatically. An anycast IPv4 address is reserved: 192.88.99.1.
A 6to4 relay is configured with this address as a secondary address and the IPv4 routing
infrastructure in the network is configured to route packets to that IPv4 special address.

In Figure 16.13, R1 is not configured with the address of a specific 6to4 relay but with
the 6to4 reserved anycast address for its IPv6 default route. R1 forwards the encapsulated
packets for the non-6to4 IPv6 Internet to the IPv4 anycast reserved address. The IPv4 routing
sends it to the nearest relay (R3). The 6to4 relay (R3) is configured with the anycast address
192.99.88.1 as a secondary address. It also injects the 192.99.88.0/24 prefix in the IPv4
routing table.

Not only does the anycast address bring automatic discovery of the 6to4 relay, but it also
provides redundancy and optimal network reachability. In Figure 16.14, R3 and R4 are 6to4
relays that are configured with the anycast address 192.99.88.1 as a secondary address.
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When host A sends a packet to C, it has to go through a 6to4 relay since C’s address is
not a 6to4 address. R1 receives the packet and forwards it – encapsulated – to the IPv4 6to4
anycast address (192.99.88.1). The routing inside the IPv4 network forwards the packet to
the nearest router that has this address configured, in this case R3. The same process happens
for the packet from B where R2 forwards the packet encapsulated to the IPv4 6to4 anycast
address. The IPv4 routing forwards to the nearest router: R4.

When R3 is down, the routing tables in the IPv4 network withdraw the route to R3 for
the anycast address. When A sends a new packet, R1 again encapsulates it and forwards it
to the IPv4 6to4 anycast address, but the IPv4 routing forwards the encapsulated packet to
R4, since R3 no longer advertises the 6to4 anycast address. Anycast then gives automatic
redundancy of the 6to4 relay function.

The advertisement of the 6to4 anycast prefix could be done in the IGP or in BGP. However,
in each case and more specially on BGP, one has to make sure that this advertisement
does not go beyond your network, since your 6to4 relays will then transit traffic from other
organizations. For example, a provider could announce in IPv4 BGP the anycast prefix
(192.99.88.0/24) to only some of its peers, so that it transits traffic for its customers and
partners, but not for the whole IPv4 Internet.

16.2.5.7 Requirements

The requirements to deploy 6to4 are:

• The border routers (R1, R2) of the sites are dual-stack.
• The border routers (R1, R2) of the sites support 6to4.
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• All 6to4 sites are reachable through their IPv4 border router address.
• All 6to4 sites have a 6to4 relay, statically configured on the site border router, to transit

the non-6to4 IPv6 traffic.
• Hosts do not need to support or know about 6to4.

Important to remember:

The 6to4 mechanism uses the 2002::/16 prefix. Any 6to4 site has the following address
space: 2002:<ipv4 external address in hex>::/48. Only the border router has to support
6to4.

16.2.5.8 Limitations

6to4 embeds the IPv4 address inside the IPv6 prefix. So all nodes of a 6to4 site have the
IPv4 address of the site border router embedded in their IPv6 address, in the prefix part.

Embedding of the IPv4 address inside the IPv6 address introduces some issues, such as:

• IPv4 address binding;
• redundancy;
• scalability;
• routing priority.

The border router external IPv4 address is used to define the /48 of the site. In the event
that the border router changes its IPv4 address, then the whole site has to renumber: all
nodes within the site have to change their IPv6 address. This also means DNS changes,
configuration changes, network management setup changes, etc. Changing IP addresses of
all nodes within a site is a painful experience. Even if IPv6 has an IPv6 renumbering protocol
(see Section 9.10), it is still costly and inconvenient to renumber a site.

The border router external IPv4 address is used inside the IPv6 addresses. All the traffic
going to the 6to4 site must go through the router that has its IPv4 external address embedded.
Even if the site has multiple connections to the IPv4 Internet, all IPv6 encapsulated traffic
is always going through the same border router, reachable and known by its IPv4 address. If
the router is dead, then the full site is dead, since there is no possible redundant path because
the IPv6 address is bound to the external IPv4 address.

If all users of the current IPv4 Internet use 6to4 for IPv6 connectivity, then the full IPv4
address space (232 addresses) will be inserted into the IPv6 site routing table, which has
scaling issues.

When a dual-stack node in a combined IPv4/IPv6 network has 6to4 support, if the
destination is a 6to4 address, does it send the packet to the 6to4 router or does it make the
automatic 6to4 tunnel itself? By default, the node tries to do the 6to4 automatic tunneling,
which results inside the site that this packet will be routed through the IPv4 routing instead
of the IPv6 routing.

Security considerations for 6to4 have been documented [RFC 3964].
Finally, 6to4 cannot traverse NATs.
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16.2.5.9 Applicability

All these above issues make the use of 6to4 relevant in small/home networks where there is
no NAT in the path, but typically not in enterprise or large networks.

16.2.6 ISATAP

Intra-Site Automatic Tunnel Addressing Protocol (ISATAP) [Templin et al., 2003] is a
mechanism to automate the creation of tunnels from nodes to a router and from nodes to
nodes inside a site.

16.2.6.1 Addressing

This mechanism embeds the IPv4 address of the node in the last 32 bits of the interface
identifier part of its IPv6 address. Figure 16.15 shows the format of an ISATAP address. The
first 32 bits of the interface identifier are ‘00:00:5E:FE’, reserved by IANA for ISATAP,
and define the ISATAP interface identifier.

16.2.6.2 Tunneling

ISATAP creates one virtual link over a full IPv4 site. A /64 from the /48 prefix of the
site is dedicated for the ISATAP link. This will be used by the ISATAP nodes as their /64
prefix, as shown in Figure 16.15. Link-local (fe80::/64) is also used on the virtual ISATAP
link.

Figure 16.16 shows an example of an ISATAP network. Host A, host B and router
R1 are all dual-stack and have an enabled implementation of ISATAP. Host C is IPv6
without ISATAP. The network manager uses the 3ffe:b00:1::/48 for its site. It assigns
3ffe:b00:1:2::/64 to the ISATAP virtual link over the IPv4 network.

Host A has the 192.0.2.1 IPv4 address and creates its link-local address based on the
ISATAP format: fe80::5efe:c000:0201, computed using the ISATAP 32 bit interface
identifier (0000:5efe) and the hexadecimal representation (c000:0201) of its IPv4 address
(192.0.2.1). Host B and router R1 do the same respectively, which builds a virtual link as
shown in Figure 16.17.

Host A sends a router solicitation to the ISATAP address of the ISATAP router
(R1) statically configured in the node. Receiving a router advertisement from the ISA-
TAP router R1 over the ISATAP virtual link, host A configures its global address as
3ffe:b00:1:2:5efe:c000:0201, since 3ffe:b00:1:2::/64 is the prefix of the virtual link received

Link-local or ISATAP assigned prefix 00:00:5E:FE IPv4 address

64 64

32

Figure 16.15 ISATAP address format
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Figure 16.17 ISATAP virtual link with link-local addresses

from the router. The router advertisements also include that R1 is identifying itself as a
default router, advertising its ISATAP address as the next hop. Host B does the same respec-
tively, which enhances the virtual link with global addresses and a default router to reach
the IPv6 network inside the site, as shown in Figure 16.18.

When A sends a packet to B, it sees B as on the same link, so A sends a neighbor
solicitation to the B address. B responds with a neighbor advertisement. These IPv6 messages
are encapsulated inside unicast IPv4 packets.

Table 16.6 describes the process when the ISATAP node A sends the first IPv6 packet to
ISATAP node B, using Figure 16.16 as the example network.

Table 16.7 describes the process when the ISATAP node A sends the first IPv6 packet to
non-ISATAP node C, using Figure 16.16 as the example network.
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Figure 16.18 ISATAP virtual link with global addresses

Table 16.6 ISATAP node to node communication

From → To Type of packet Source and destination addresses Description and content

0 A wants to send a packet to B. B’s IPv6 address (3ffe:b00:1:2::5efe:c000:201) has the same link
prefix (3ffe:b00:1:2::/64) as A (3ffe:b00:1:2::5efe:c000:101) on the ISATAP virtual interface of
A. Therefore, A does a neighbor solicitation on the ISATAP virtual interface for B.

1 A → B IPv6 neighbor
solicitation over
IPv4

IPv4 src: 192.0.2.1
IPv4 dst: 192.0.1.1
IPv6 src: 3ffe:b00:1:2::5efe:c000:201
IPv6 dst: ff02::1:ff00:101

The neighbor solicitation is
encapsulated in IPv4. The
IPv4 destination address is
taken from the IPv6
destination address. The
IPv6 destination address is
the solicited-node multicast
address (see Section 6.1).

2 B → A IPv6 neighbor
advertisement
over IPv4

IPv4 src: 192.0.1.1
IPv4 dst: 192.0.2.1
IPv6 src: 3ffe:b00:1:2::5efe:c000:101
IPv6 dst: 3ffe:b00:1:2::5efe:c000:201

The neighbor advertisement
is encapsulated in IPv4.
Returns confirmation of
3ffe:b00:1:2::5efe:c000:
0101 with link-layer
address of 192.0.1.1.

3 A → B IPv6 packet
over IPv4

IPv4 src: 192.0.2.1
IPv4 dst: 192.0.1.1
IPv6 src: 3ffe:b00:1:2::5efe:c000:201
IPv6 dst: 3ffe:b00:1:2::5efe:c000:101

IPv6 packet sent
encapsulated.

4 B → A IPv6 packet
over IPv4

IPv4 src: 192.0.1.1
IPv4 dst: 192.0.2.1
IPv6 src: 3ffe:b00:1:2::5efe:c000:101
IPv6 dst: 3ffe:b00:1:2::5efe:c000:201

Reply IPv6 packet.

16.2.6.3 Requirements

The requirements to deploy ISATAP are:

• IPv6 nodes in the site are dual-stack.
• IPv6 nodes implement ISATAP.
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Table 16.7 ISATAP node to non-isatap node communication

From → To Type of packet Source and destination addresses Description and content

0 A wants to send a packet to C. C’s IPv6 address (3ffe:b00:1:1::1) does not have the same link
prefix (3ffe:b00:1:2::/64) as A (3ffe:b00:1:2::5efe:c000:101) on the ISATAP virtual interface of
A. Therefore, A needs to send the packet to C through the default router R1 (statically
configured in A). A does a neighbor solicitation on the ISATAP virtual interface for R1.

1 A → R1 IPv6 neighbor
solicitation over
IPv4

IPv4 src: 192.0.2.1
IPv4 dst: 192.0.3.1
IPv6 src: fe80::5efe:c000:201
IPv6 dst: ff02::1:ff00:301

The neighbor solicitation
is encapsulated in IPv4.
The IPv4 destination
address is R1, the default
ISATAP router, whose
address is statically
configured in A.

2 R1 → A IPv6 neighbor
advertisement
over IPv4

IPv4 src: 192.0.3.1
IPv4 dst: 192.0.2.1
IPv6 src: fe80::5efe:c000:301
IPv6 dst: fe80::5efe:c000:201

The neighbor
advertisement is
encapsulated in IPv4.
Returns confirmation of
fe80::5efe:c000:0301
with link-layer address
of 192.0.3.1.

3 A → C
through
R1

IPv6 packet
over IPv4

IPv4 src: 192.0.2.1
IPv4 dst: 192.0.3.1
IPv6 src: 3ffe:b00:1:2::5efe:c000:201
IPv6 dst: 3ffe:b00:1:1::1

IPv6 packet sent
encapsulated in IPv4 to
R1, while C is the final
IPv6 destination.

4 R1 → C IPv6 native
packet

IPv6 src: 3ffe:b00:1:2::5efe:c000:201
IPv6 dst: 3ffe:b00:1:1::1

R1 receives the IPv6 in
IPv4 encapsulated
packet, decapsulates it
and send it natively to C.

5 C → A IPv6 reply
packet

IPv6 src: 3ffe:b00:1:1::1
IPv6 dst: 3ffe:b00:1:2::5efe:c000:201

• A dual-stack router with ISATAP is available on the IPv4 network to reach the rest of
IPv6 in the site.

• The ISATAP default router is statically configured in all ISATAP nodes.
• ISATAP is used within a site, or within one administrative domain.

Important to remember

All nodes must support ISATAP in order to communicate. An ISATAP router is needed
and must be statically configured in ISATAP nodes.

16.2.6.4 Limitations

ISATAP creates a virtual link over a potentially wide IPv4 network. Any broadcast-like
packet, such as one sent to ff01::1, on the link will create a potentially large number
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of packets on the network. So the more ISATAP nodes that are deployed, the less it is
scalable.

ISATAP does not traverse NAT.

16.2.6.5 Applicability

ISATAP is suited for enterprise deployment, but not for providers, and not for home networks.
In the enterprise context, no NAT should be in the path between any two ISATAP nodes.

16.2.7 IPv6 in IPv4 Tunneling Considerations

Static tunnels, 6to4 and ISATAP are all using IPv6 in IPv4 encapsulation using IPv4
protocol 41.

Encapsulation of one protocol datagram inside another protocol datagram hides the under-
lying infrastructure from the encapsulated protocol. This makes routing less efficient, trou-
bleshooting more difficult, tricks the Hop limit processing and requires special processing
of MTU discovery and ICMP messages and requires traversing firewalls and NATs.

16.2.7.1 Routing Inefficiency

When overlaying one IP protocol over the other, the routing realms of the two IP protocols
are unrelated which sometimes results in less optimal routing decisions of the encapsulated
protocol.

Figure 16.19 shows an example of IPv6 tunnels over an IPv4 network. Router R1 has a
tunnel to R4 which goes through R2 and R3 in the IPv4 network. R1 also has another tunnel
to R5. When the host H1 sends an IPv6 datagram to H2, it sends it to R1. R1 encapsulates
the IPv6 datagram in an IPv4 datagram and forwards it to R4, which decapsulates it and
sends the IPv6 datagram to H2. R1 may also forward the encapsulated datagram to R5,
which decapsulates it and sends the IPv6 datagram to R6 which forwards it to H2.

Figure 16.20 shows the IPv6 routing view of the Figure 16.19 network, without the
underlying (IPv4) infrastructure.
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Figure 16.19 IPv4/IPv6 routing realms example
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Figure 16.20 IPv6 routing realm

In default distance-vector routing, R1 chooses R4 as the next hop since the path to H2 is
shorter in the number of hops: 1 hop (R4) instead of 2 hops (R5–R6). So IPv6 datagrams
are forwarded through the R1–R4 tunnel.

However, in the underlying IPv4 infrastructure, the reality is different. Figure 16.21 shows
the underlying (IPv4) routing infrastructure of the Figure 16.19 network.

In a default distance-vector routing, an IPv4 datagram sent to H2 is forwarded to R1
and R5 since the path is shorter: 2 hops (R5–R6) instead of 3 hops (R2–R3–R4). Since
the underlying IPv4 infrastructure corresponds to the real routing infrastructure, the chosen
IPv6 forwarding path (through R4), as shown in Figure 16.20, is not the optimal one
(through R5).

While this is a generic issue, it does not apply with the same level of concern in all cases.
To minimize the effect, make the tunneled virtual network topology as close as possible to
the underlying network topology. In other words, keep the underlying hop count as small as
possible and as linear as possible.

16.2.7.2 Troubleshooting is more difficult

Since the encapsulated IPv6 datagrams are not directly seen in the underlying IPv4 infras-
tructure, the troubleshooting is more difficult. For example, the management tools of the
IPv4 network may show some congestion between two routers. Without encapsulation, it is
easy to find the source and destination of the datagrams that generate heavy traffic and then
fix the problem, by shutting down the source node for example. However, with encapsulated
datagrams, the real source of the datagrams is not shown directly but is encapsulated in
the packets. For example, the traffic generating the tunneled datagram traveling between
R1 and R4 in Figure 16.19 does not originate from R1, even if the source address of
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Figure 16.21 IPv4 routing realm
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the IPv4 datagram is R1’s address, but instead originates from some node in IPv6 net-
work A.

16.2.7.3 Decreasing MTU

An encapsulating node sees the IPv4 layer as a layer 2, where the IPv4 infrastructure is seen
as a virtual link with an ‘unlimited’ MTU. Since the maximum IPv6 MTU is 65536 octets,
then the maximum theoretical MTU over the IPv4 tunnel is 65536−20octets = 65516, since
20 octets are used for the IPv4 header.

If the IPv4 path MTU, for example 1400 octets, between the two encapsulation points
(R1 and R4 in Figure 16.19) is smaller than the MTU used at the IPv6 layer, for example
1500 octets, then the IPv6 source node sends larger datagrams, for example 1450 octets,
than the IPv4 path can support, and fragmentation happens at the IPv4 layer. Fragmentation
impacts on the performance of routers as well as on destination nodes. It also increases the
end-to-end delay since the decapsulating router or node has to wait for all fragments before
forwarding.

Since the decapsulating router is the IPv4 destination, for example R4 in Figure 16.19,
it has to store the IPv4 fragments as they arrive and wait until all IPv4 fragments arrive to
reassemble the IPv4 datagram and then decapsulate in order to forward the IPv6 datagram.
This causes additional memory storage and processing time on the decapsulating router and
delivery delays.

To avoid this situation, the encapsulating router should do an IPv4 path MTU discovery.
Then the IPv6 MTU on the tunnel is the IPv4 path MTU found minus the size of IPv4 header
(20 octets). The encapsulating router should also set the ‘Don’t fragment’ bit in the IPv4
header to avoid fragmentation. However, recall that the guaranteed minimum IPv6 MTU
is 1280 octets, as discussed in Section 3.6.2. If the calculated IPv6 MTU on the tunnel,
based on the discovered IPv4 path MTU, is less than the minimum IPv6 MTU (1280 octets),
then whenever the source node sends a datagram larger than the IPv6 MTU on the tunnel,
IPv4 fragmentation must be used, since that would be the only way to succeed sending in
the datagram to the destination node. If IPv4 fragmentation is not used in this special case,
then all datagrams larger than the IPv6 MTU on the tunnel will be discarded and an ICMP
‘Packet too big’ error message sent back to the source.

Most current link-layers have a MTU of at least 1500 octets, so these issues may not
happen very often.

16.2.7.4 ICMP Processing

In Figure 16.19, the IPv4 routers R2 and R3 in the underlying IPv4 path of the tunnel may
have problems forwarding the IPv4 datagram, for example when the IPv4 destination (R4)
is unreachable. Seeing the problem, the router discards the datagram and sends an ICMPv4
message back to the source (R1). For a normal IPv4 packet, the ICMP message contains
the type of ICMP error and also the first 8 octets of the IPv4 payload, so the source node
receiving the ICMP message can read the transport port numbers and signal the ICMP error
to the proper upper layer application. Figure 16.22 illustrates the extraction done by a router
of the IP header and the first 8 octets after the IP header, which contains the transport header.
This extraction is sent in the payload of the ICMP message.
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Figure 16.23 ICMP extraction of an encapsulated datagram

However, if the datagram is an encapsulated datagram as in transit between R1 and R4
in Figure 16.19, then the first 8 octets of the IPv4 payload is the first 8 octets of the inner
IPv6 header, as illustrated in Figure 16.23. Obviously, this does not include the transport
port numbers as in Figure 16.22, but instead contains the version, traffic class, flow label,
payload length, next header and hop limit fields. No IPv6 source and destination address
and no transport information is available in the first 8 octets of the IPv4 payload of an IPv6
encapsulated packet.

The source of the IPv4 datagram, R1 in Figure 16.19, receiving the ICMP message, does
not have any idea how to find the IPv6 source of the inner datagram, since the ICMP data
are not large enough.

Even worse, the error should be notified to the IPv6 source (H1) of the original packet,
but the router R1 does not receive the IPv6 source address and the port numbers inside the
ICMP payload.

To circumvent this problem, encapsulating routers maintain a soft-state database of the
tunnels. In the case of an ICMP IPv4 error message, the router is then able to reconstruct
from its soft-state table the IPv6 information and create an IPv6 ICMP error message to be
sent to the IPv6 source node of the original packet.

16.2.7.5 Hop Limit

The hop limit in IPv6 or TTL in IPv4 is decremented each time a router forwards the packet,
as discussed in Section 3.4.5. For an IPv6 in IPv4 tunnel, the IPv4 packet might go through
60 routers, where the IPv6 packet might still be in the same tunnel. The IPv6 traffic is not
aware of this behavior. If the IPv6 source stack sets the hop limit to 32 hops while the
IPv4 stack TTL is set to 64, then the packet will not be discarded, but one can guess that
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if the IPv6 stack knew it was going through 60 routers, the packet would have been dis-
carded. Again, the two layers are not synchronized, which, in some cases, gives non-optimal
behaviors.

16.2.7.6 Dependency on IPv4 Address

Static tunnels are configured with the IPv4 address of both endpoints. Whenever one endpoint
changes its IPv4 address, the tunnel needs to be reconfigured to work again. If static tunnels
are used by nodes that have a probability of changing IPv4 address, such as DHCP clients,
then they are not the best tool.

6to4 and ISATAP are mechanisms embedding the IPv4 address of the node inside the
specially formed IPv6 address.

If the node moves, then the IPv6 address is also changed. Moreover, if a gateway receives
an IPv6 prefix based on the IPv4 address, then the whole network using this prefix will
renumber. Finally, the IPv4 address binding disables possible redundancy solutions, since
one must go through the advertised IPv4 address for the tunnel endpoint. Solutions not
dependent on the IPv4 address are more flexible.

16.2.7.7 Filtering IPv4 Protocol 41

An IPv6 packet encapsulated in an IPv4 packet is identified with 41 in the protocol field of
an IPv4 header. Since security gateways have the typical rule of denying everything unless
specifically permitted, protocol 41 packets are often blocked by security gateways. IPv6
in IPv4 tunnels usually do not work across a security gateway unless the manager of the
gateway specifically permits them. Static tunnels, 6to4 and ISATAP do not work if such a
security gateway policy is applied in the path of the tunnel.

16.2.7.8 IPv4 Network Address Translation

An IPv6 in IPv4 tunnel requires that both tunnel endpoints are reachable by their IPv4
address. If one or many NATs are in the path between the two endpoints, then the tunnel
does not work. This is because the IP address of the endpoint is translated by the NAT, as
shown in Figure 16.24.
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Figure 16.24 Tunnels do not traverse NAT
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In Figure 16.24, node A knows B by the external address of the NAT (192.0.3.1). When
node A sends an encapsulated packet to B, it reaches the NAT but it is not forwarded to B,
nor is the destination address changed.

Workarounds are possible to enable the tunnel when only one NAT is in the path and
when this NAT is under the control of one of the tunnel endpoint administrators.

The first workaround is to configure the NAT statically to forward any IPv4 protocol 41
packet to the specific IPv4 internal address of the tunnel endpoint, as shown in Figure 16.25.

In Figure 16.25, a rule is added to the NAT where any IP protocol 41 packets (containing
IPv6 packets) are forwarded to 192.168.1.1. Only one node behind the NAT can receive the
packets, limiting this workaround to one node per NAT. If multiple NATs are in the path,
it is nearly operationally impossible to add a rule to each of them to let the traffic through.
Moreover, many NAT implementations do not support specific processing and forwarding
of IPv4 protocol 41.

The other workaround is to assign a secondary address on the external interface of the
NAT to be the mapped IP address of the internal endpoint. Any traffic going to the secondary
external address is forwarded to the internal endpoint as shown in Figure 16.26. However,
secondary addresses are often not available.
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These two workarounds obviously do not scale: only one tunnel is possible per NAT
external IPv4 address. Moreover, they require administrative control of the NAT, static
configuration of the NAT and support of this forwarding capability, and they will not work
if multiple NATs are in the path between the two endpoints.

NAT traversal techniques are based on the internal behavior of the NAT port mapping
[RFC2663]. Different categories [RFC3489] of NAT are defined: Full-cone, restricted cone,
port restricted cone and symmetric. Many NAT traversal techniques try to identify the kind of
NAT to optimize the traversal of packets. Additional information on NAT traversal techniques
and categories of NAT are available on the book Web site (http://www.ipv6book.ca).

To traverse NAT, most of the solutions, such as STUN [RFC3489] for IPv4 applications,
are based on UDP encapsulation of the IP packet. The same technique is used for IPv6
tunneling techniques over IPv4 with the presence of NATs in the path.

16.2.8 Encapsulating IPv6 in UDP IPv4

As discussed in section 16.2.7, IPv4 address translation (NAT) blocks IPv6 in IPv4 tunnels,
since the node behind the NAT cannot be reached by the other party. One solution is to
move up in the networking stack by encapsulating IPv6 packets in UDP transport in IPv4
packets, as shown in Figure 16.27.

The IP protocol is connectionless as UDP, which makes UDP a better candidate for
transport encapsulation than TCP. TCP connection algorithm and header length are too
important overhead for layer 3 encapsulation. Stream Control Transport Protocol (SCTP)
[RFC2969] is a possible alternative to UDP but its lack of support by NATs and firewall
implementations makes it useless to traverse deployed NATs in the field.

UDP being connectionless, NAT implementations cannot manage, as in TCP, an outgoing
connection and close the mapped port when the connection is terminated. In UDP, no such
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Figure 16.27 Encapsulation of an IPv6 datagram in a UDP-IPv4 datagram
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termination happens. NATs manage the UDP connections by maintaining a timer of the
absence of traffic on that connection before closing the mapped port. The timeout is usually
between 30 seconds and a few minutes [Huitema, 2005; RFC3489].

16.2.9 Tunnel Setup Protocol (TSP) Tunnel Broker

The Tunnel Setup Protocol (TSP) [Blanchet and Parent, 2005] is designed to automate the
process of establishing IPv6 in IPv4 tunnels in order to provide ubiquitous and transparent
access to IPv6. It is a signaling protocol between the client and the broker, where the client
requests a tunnel and the broker sends the information about the assigned tunnel. Both parties
then configure their respective tunnel endpoints and the tunnel is established. TSP is an
enhanced version of the tunnel broker model [RFC3053].

16.2.9.1 Basic Architecture

Figure 16.28 shows the basic components of the TSP tunnel broker architecture.
A node N1 has the TSP client software and connects to the Tunnel broker TB using TCP

or UDP on the TSP well known port (3653). After authentication1, the client requests the
tunnel and the broker assigns and configures the new tunnel to the tunnel server TS1. The
broker replies to the tunnel request from N1 by sending the tunnel info. The TSP client on
node N1 configures its tunnel endpoint as a static tunnel (discussed in Section 16.2.4), but
managed by TSP. The tunnel is established and IPv6 packets are encapsulated in IPv4 from
the node N1 to the tunnel server TS1.

16.2.9.2 Combining Tunnel Broker and Server

The tunnel broker (TB) and server (TS) may also be combined on the same hardware, as
shown in Figure 16.29.

N1

IPv4
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TS1IPv6 in IPv4 IPv6

TSP

Figure 16.28 TSP tunnel broker

1 Authentication is optional.
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Figure 16.29 TSP tunnel broker and server combined

For the rest of the section, the two components are discussed as if they were separate. An
implementation can decide to combine the two in the same hardware. However, to support
the NAT traversal feature for all kinds of NAT, the tunnel broker and the tunnel server must
be on the same interface sharing the same IPv4 address. Since most deployments over IPv4
networks require NAT traversal, then most implementations are combining the tunnel broker
and the tunnel server together.

16.2.9.3 TSP Flow

The tunnel is setup between the two endpoints with the TSP exchange. When a tunnel client
wants to establish a tunnel with the tunnel broker, the TSP client connects to the TSP server
over TCP on port 3653 on the tunnel broker, authenticates itself to the broker, requests
the tunnel and gets the tunnel information response from the broker. Both parties end the
TSP connection and then configure on their side the tunnel endpoint. The tunnel is then
established. Figure 16.30 shows the process of a TSP client requesting a tunnel.

Table 16.8 describes each step of Figure 16.30 in detail.
Although described in 12 steps, the setup consists of only a few round trip packets, and

therefore is a pretty lightweight signaling protocol.

16.2.9.4 TSP Tunnel Broker Capabilities

In step 2 of Figure 16.30, the broker sends all its capabilities: Table 16.9 shows the list of
some defined capabilities. A broker can advertise some or all of these capabilities, depending
on its configuration.

Tunnel encapsulation capabilities of TSP tunnel brokers, such as IPv6 in IPv4, IPv6 in
UDP-IPv4 and IPv4 in IPv6, enable a client to establish connectivity in all these contexts,
making the solution versatile. For example, the client might not know if it is behind a
NAT. With the TSP protocol capabilities and subsequent processing discussed below, the
broker is able to find if the client is behind a NAT and then proposes an IPv6 in UDP-IPv4
tunnel to the client. Moreover, in cases where the client is on an IPv6-only network and
needs IPv4 connectivity, the TSP negotiation manages this situation automatically. The TSP
negotiation permits the adaptation of the context to establish the connectivity for the other
IP protocol to which the client is not yet connected. When the TSP client is a mobile node,
the service enables the client to be connected on both IP networks, whether its current point
of attachment has one or the other IP protocol available.
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Figure 16.30 TSP flow

Table 16.8 TSP flow detailed

Step Description

1 The TSP client connects to the TSP server port (3653) using TCP over
IPv4 of the tunnel broker. The IPv4 address of the tunnel broker is
configured in the TSP client. When the TCP connection is established,
the client sends the version of the TSP protocol it is using to the broker.
The version declaration enables the TSP protocol to evolve while
keeping the TSP client simple and putting the burden of managing the
multiple versions on the broker.

2 The tunnel broker verifies that it supports the received version of the
TSP protocol and then sends a list of its capabilities, based on its
configuration. For example, the broker advertises to the client the
supported authentication mechanisms, tunneling encapsulation modes,
prefix delegation and DNS delegation modes.

3 Based on the received capabilities and the TSP client configuration, the
TSP client sends its authentication information, using the SASL
[RFC2222] format. For example, the client sends its username and
password.

(continued overleaf )
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Table 16.8 (continued)

Step Description

4 The broker verifies the authentication information and sends an
authentication successful status message to the client.

5 The client sends a tunnel request to the server, formatted in a XML
object, as shown in Section 16.2.9.5. The request contains the client IPv4
address and may contain a request for a prefix or DNS delegation.

6 For a new tunnel, the broker allocates the IPv6 addresses from a pool of
IPv6 addresses, and may allocate an IPv6 prefix if requested.

7 The broker configures the allocated tunnel on its tunnel server.
8 The tunnel server signals the broker that the tunnel is created.
9 The tunnel endpoint on the broker/server side is created and tunnel

information is permanently saved with the user information.
10 The tunnel information, formatted in a XML object, is sent to the TSP

client. The information contains the IPv4 and IPv6 addresses of both
tunnel endpoints and may contain the allocated IPv6 prefix and DNS
information. It also contains the lifetime of the tunnel which tells
the client when it should renew its tunnel before it expires on the
broker/server side.

11 The TSP client creates its tunnel endpoint based on the tunnel
information received from the broker in the previous step.

12 The tunnel is established between the two endpoints.
13 The client can then start sending IPv6 packets over the IPv6-over-IPv4

tunnel. For example, an IPv6 packet is encapsulated into an IPv4 packet
with the destination address to the tunnel server.

14 The IPv6 in IPv4 packet is sent to the tunnel server.
15 The tunnel server receives the packet and decapsulates it to forward the

IPv6 packet natively on the IPv6 network to the IPv6 destination node.
16 The destination node receives the IPv6 packet.

Table 16.9 TSP tunnel broker capabilities

Capability keyword Description

TUNNEL = V6V4 This broker offers IPv6 in IPv4 tunnels.
TUNNEL = V6UDPV4 This broker offers IPv6 in UDP in IPv4

tunnels.
TUNNEL = V4V6 This broker offers IPv4 in IPv6 tunnels.
AUTH = ANONYMOUS This broker supports anonymous

authentication [RFC2245].
AUTH = PLAIN This broker supports plain text

authentication [RFC2222], where the
username and passwords are transfered in
the clear, without any encryption.

AUTH = DIGEST-MD5 This broker supports the digest-md5
authentication mechanism [RFC2831],
where the password is not sent in the clear.
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16.2.9.5 TSP Tunnel Request XML Messaging

In step 5 of Figure 16.30, the client sends its tunnel request in XML format. A request for
an IPv6 in IPv4 tunnel is formatted as follows:

<tunnel action="create" type="v6v4">
<client>
<address type="ipv4">192.0.2.1</address>

</client>
</tunnel>

The client requests a tunnel (<tunnel>) to be created (action="create") using
IPv6 in IPv4 encapsulation (type="v6v4"), advertising its IPv4 address (<address
type="ipv4"> 192.0.2.1</address>).

The broker responds with the tunnel information (step 10 in figure 16.30), confirming the
tunnel creation, formatted in XML as in the following:

<tunnel action="info" type="v6v4" lifetime="1440">
<server>
<address type="ipv4">192.0.1.1</address>
<address type="ipv6"> 3ffe:b00:0:1::</address>

</server>
<client>
<address type="ipv4">192.0.2.1</address>
<address type="ipv6"> 3ffe:b00:0:1::1</address>

</client>
</tunnel>

The IPv6 addresses of both endpoints and the IPv4 address of the tunnel server endpoint
(192.0.1.1) are sent to the client. The client has all the information needed to configure its
own tunnel endpoint.

16.2.9.6 Lifetime of the Tunnel

In the previous example, the broker also includes in its response the lifetime of the tunnel
(1440 seconds) to tell the client when the tunnel will be expired. It is the responsibility of
the client to reconnect to the broker before the lifetime expires to keep the tunnel up. A
typical TSP client implementation usually sleeps for the lifetime period and then wakes up
before the lifetime expires to reconnect to the broker. The renewal process uses the same
messages: the client requests the creation of a tunnel and the broker sends the same tunnel
information as before. If the tunnel is still up on both sides, then the broker and the client
do not create or change the tunnel configuration on their respective sides.

16.2.9.7 Complete TSP Transaction

Table 16.10 shows an example of a simple TSP connection with anonymous authentication.
The first column contains the step number. The second column identifies if the client (C) or
the server (S) sends the message described in the third column.
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Table 16.10 Anonymous TSP connection

TSP message

0 TCP connection established on port 3653
1 C VERSION=1.0
2 S CAPABILITY TUNNEL=V6V4 AUTH=DIGEST-MD5 AUTH=ANONYMOUS
3 C AUTHENTICATE ANONYMOUS
4 S 200 Authentication successful
5 C Content-length: 123

<tunnel action="create" type="v6v4">
<client>
<address type="ipv4">192.0.2.1</address>

</client>
</tunnel>

6 S Content-length: 234
200 OK
<tunnel action="info" type="v6v4" lifetime="1440">
<server>
<address type="ipv4">192.0.1.1</address>
<address type="ipv6">3ffe:b00:0:1::</address>

</server>
<client>
<address type="ipv4">192.0.2.1</address>
<address type="ipv6">3ffe:b00:0:1::1</address>

</client>
</tunnel>

7 C Close the TCP connection.

Step 0 is the TCP connection established between the client and the broker over IPv4 on
port 3653.

Step 1 shows the initial TCP connection of the client to the broker advertising the highest
version number (VERSION=1.0) of the TSP protocol supported by the client. This enables
further versions of the protocol to be deployed gracefully. The broker has the burden to
support multiple versions of the protocol.

In step 2, if the broker supports the version advertised by the client, the broker advertises
its capabilities to the client. In this example, the broker supports IPv6 over IPv4 tunnels
(TUNNEL=V6V4) and authentication using digest-md5 (AUTH=DIGEST-MD5) or anony-
mous (AUTH=ANONYMOUS). This advertisement enables the client to know the broker
capabilities and chooses among them.

Step 3 shows the client choosing the anonymous authentication (AUTHENTICATE
ANONYMOUS), where no username or password is required.

In step 4, the broker verifies the authentication, in this case nothing, and reports suc-
cessful authentication (200 Authentication successful). If the client chooses the digest-md5
authentication, then it sends the appropriate userid and the digest-md5 hash of its password
to the broker, and the broker verifies the user credentials.
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In step 5, after successful authentication, the client sends its tunnel creation request
(action="create") for an IPv6-in-IPv4 tunnel (type="v6v4"), using its IPv4 address
(<address type="ipv4">192.0.2.1</address>) as its endpoint of the tunnel.

In step 6, the broker processes the answer, allocates the IPv6 addresses, configures the
tunnel server for the tunnel and then responds positively to the client request (200 OK)
and sends to the client the necessary information for the client to configure its tunnel
endpoint: the server’s and the client’s IPv4 and IPv6 addresses. It also defines a lifetime
(lifetime="1440") for the tunnel.

Then the client closes the TSP TCP connection and configures its endpoint of the tunnel.
The tunnel is then active and IPv6 traffic can go through the tunnel.

16.2.9.8 TSP Client Behind a NAT

As discussed in Section 16.2.7.8, an IPv6 in IPv4 tunnel does not work if a NAT is in the
path between the two endpoints. To traverse NATs, the TSP client and broker handle the
TSP session over UDP IPv4, as shown in Figure 16.31.

When the TSP session is terminated, the tunnel is established over the same UDP channel,
ensuring that the NAT port mapping is preserved. The IPv6 traffic is encapsulated in UDP
IPv4 and traverses the NAT through the same port mapping.

A TSP broker discovers when a client is behind a NAT because the embedded IPv4
address inside the TSP XML tunnel request is different from the source IPv4 address of the
TSP packet, as shown in Figure 16.32.

When the TSP client N1 assembles its TSP packet, its IPv4 address 10.1.1.1 is put as the
source address of the packet and inside the TSP XML tunnel request. The NAT changes the
source address to 192.0.2.1 but does not change the address in the TSP XML tunnel request.
The TSP broker compares the two addresses received and detects the presence of a NAT.

When a NAT is detected, the broker offers to the client an IPv6 in UDP IPv4 tunnel,
using the ‘v6udpv4’ keyword, as shown below.

<tunnel action="create" type="v6v4">
<client>
<address type="ipv4">10.1.1.1</address>

</client>
</tunnel>
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Figure 16.31 TSP session over UDP-IPv4
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Figure 16.32 TSP NAT traversal detection

The client requests a tunnel (<tunnel>) to be created (action="create") using
IPv6 in IPv4 encapsulation (type="v6v4"), advertising its IPv4 address (<address
type="ipv4">10.1.1.1</address>). The broker detects the client is behind a NAT,
and offers instead the IPv6 in UDP IPv4 encapsulation.

<tunnel action="info" type="v6udpv4" lifetime="1440">
<server>
<address type="ipv4">192.0.1.1</address>
<address type="ipv6">3ffe:b00:0:1::</address>

</server>
<client>
<address type="ipv4">10.1.1.1</address>
<address type="ipv6">3ffe:b00:0:1::1</address>

</client>
</tunnel>

This IPv6 in UDP IPv4 tunnel will then take place over the same UDP channel that was
established for the TSP connection.

16.2.9.9 Keepalive

To detect any network failure between the two endpoints, a keepalive mechanism is imple-
mented where the client and the broker exchange a null packet periodically. This enables
the TSP client to detect the failure, remove the route in its kernel and re-establish the tunnel
by contacting again the broker or another broker. The keepalive is also used to maintain the
NAT port mapping so that the UDP connection can be used as the encapsulation method for
IPv6 traffic through the NAT.
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16.2.9.10 TSP Client Tunnel Endpoint DNS Registration

The TSP client may have its tunnel endpoint address registered in the DNS by the broker.
The broker confirms the registration using the <address type= "dn"> statement in the
info reply, as shown below.

<tunnel action="info" type="v6udpv4" lifetime="1440">
<server>
<address type="ipv4">192.0.1.1</address>
<address type="ipv6">3ffe:b00:0:1::</address>

</server>
<client>
<address type="ipv4">10.1.1.1</address>
<address type="ipv6">3ffe:b00:0:1::1</address>
<address type="dn">client1.freenet6.net</address>

</client>
</tunnel>

In this example, the client tunnel endpoint 3ffe:b00:0:1::1 is known in the DNS by
client1.freenet6.net using a AAAA record.

16.2.9.11 TSP Client is a Router and Requests a Prefix

When the TSP client is a router with a network behind, it needs an IPv6 prefix to be used
in its IPv6 network behind it. Figure 16.33 shows such a situation.

In this case, the TSP client includes in its tunnel request the <router> statement with
the length of the requested prefix (<prefix>). The following example requests a tunnel
with a /48 IPv6 prefix.

<tunnel action="create" type="v6v4">
<client>
<address type="ipv4">192.0.2.1</address>
<router>
<prefix length="48"/>

</router>
</client>

</tunnel>

IPv4

IPv6

3ffe:b00:1::/48

IPv6
IPv6 in IPv4

TS1

TB

N1

TSP

Figure 16.33 TSP client with a network behind
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The tunnel broker then allocates a prefix from its prefix pool and responds with the
information of the tunnel and prefix. The following example shows the tunnel broker answer
to the above client request, where the 3ffe:b00:1::/48 prefix is allocated to this user tunnel.

<tunnel action="info" type="v6v4" lifetime="1440">
<server>
<address type="ipv4">192.0.1.1</address>
<address type="ipv6"> 3ffe:b00:0:1::</address>

</server>
<client>
<address type="ipv4">192.0.2.1</address>
<address type="ipv6"> 3ffe:b00:0:1::1</address>
<router>
<prefix length="48">3ffe:b00:1::</prefix>

</router>
</client>

</tunnel>

The TSP client router then uses the /48 prefix to number the network behind. Figure 16.34
shows an example where two links are attached to the TSP client router.

The router receives the 3ffe:b00:1::/48 from the broker and then assigns and advertises
in router advertisements one /64 for each of his connected interface (3ffe:b00:1:1::/64,
3ffe:b00:1:2::/64), enabling the nodes behind to be autoconfigured.

16.2.9.12 TSP Client is a Router and Requests a DNS Delegation

When a TSP client is a router, it requests and gets an IPv6 prefix from the broker, as
discussed above. When an IPv6 prefix is owned by an entity, this entity may also want to
own the DNS reverse tree under ip6.arpa corresponding to the IPv6 prefix, as discussed in
Section 8.2. For example, if the IPv6 prefix is 3ffe:b00:1::/48, then the DNS reverse tree is
0.0.0.1.0.0.b.0.e.f.f.3.ip6.arpa.

Together with the request for delegation of an IPv6 prefix, a TSP client controlling a DNS
server may request for the delegation of the DNS reverse tree corresponding to the IPv6
prefix.

3ffe:b00:1:1::/64

3ffe:b00:1:2::/64

N1
IPv4

TSP

N2

IPv6IPv6 in IPv4
TS1

TB

Figure 16.34 TSP client router advertising /64 prefixes on links
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This TSP client sends within the XML router statement the list of DNS servers, using the
dns_server statement, that will be authoritative for the DNS reverse tree. Using the same
basic TSP request in the previous section, the TSP request now includes a dns_server
section, as follows.

<tunnel action="create" type="v6v4">
<client>
<address type="ipv4">192.0.2.1</address>
<router>
<prefix length="48"/>
<dns_server>
<address type="ipv4">192.0.2.3</address>
<address type="ipv4">192.0.2.4</address>
<address type="ipv6">3ffe:c00::1</address>

</dns_server>
</router>

</client>
</tunnel>

In this example, the TSP client requests an IPv6 in IPv4 tunnel and an /48 IPv6 prefix.
It is also requesting the delegation of the DNS reverse tree corresponding to the allocated
prefix, to the DNS servers listed in the request.

After allocating the prefix, the broker configures the DNS server to delegate the allocated
prefix DNS reverse tree to the listed DNS servers in the request message of the client. Then
it answers the query with the information, to confirm the delegation is done.

<tunnel action="info" type="v6v4" lifetime="1440">
<server>
<address type="ipv4">192.0.1.1</address>
<address type="ipv6"> 3ffe:b00:0:1::</address>

</server>
<client>
<address type="ipv4">192.0.2.1</address>
<address type="ipv6"> 3ffe:b00:0:1::1</address>
<router>
<prefix length="48">3ffe:b00:1::</prefix>
<dns_server>
<address type="ipv4">192.0.2.3</address>
<address type="ipv4">192.0.2.4</address>
<address type="ipv6">3ffe:c00::1</address>

</dns_server>
</router>

</client>
</tunnel>

16.2.9.13 Node Moving in the IPv4 Network

Since the user is authenticated, the broker saves the information of the tunnel attached to
the user. When the TSP client re-contacts the server, it sends a create tunnel request. When
the node has changed its IPv4 address because it moved, the tunnel request contains the
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new IPv4 address. The broker then changes the IPv4 address of the client endpoint and
replies to the client with the tunnel info, confirming the change in the IPv4 client address,
but no change in the IPv6 addresses and prefixes. For the client node, the IPv6 addresses
and connectivity are then permanent and remain stable even when the IPv4 address changes.
6to4, ISATAP and Teredo change the IPv6 address when the node changes its IPv4 address.
Keeping the IPv6 address stable enables the established connections to continue, the node
to advertise its IPv6 address and prefix in directories such as DNS, LDAP or others, and the
IPv6 applications, which exchange IP addresses such as multimedia applications and VOIP,
to continue to work while the IPv4 point of attachment changes.

In Figure 16.35, Node N1 moves from A to B, and changes its IPv4 address from 192.0.2.1
to 192.0.3.1.

When N1 is at point A, it sends to the Tunnel Broker (TB) the TSP tunnel request using
192.0.2.1 as the source address of the tunnel endpoint, as shown below.

<tunnel action="create" type="v6v4">
<client>
<address type="ipv4">192.0.2.1</address>

</client>
</tunnel>

The broker responds with the tunnel information.

<tunnel action="info" type="v6v4" lifetime="1440">
<server>
<address type="ipv4">192.0.1.1</address>
<address type="ipv6"> 3ffe:b00:0:1::</address>

</server>
<client>
<address type="ipv4">192.0.2.1</address>
<address type="ipv6"> 3ffe:b00:0:1::1</address>

</client>
</tunnel>

A) 192.0.2.1

B) 192.0.3.1

IPv4

IPv6

IPv6 in IPv4

IPv6 in IPv4
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TB

N1

N1

TSP

TSP

Figure 16.35 Tunnel re-establishment of a moving node
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The tunnel is established between N1 and R1 in Figure 16.35.
Then Node N1 moves to B where its IPv4 address changes to 192.0.3.1. The change of

address triggers the TSP client on the node to re-contact the broker for a new TSP session
and re-establish the tunnel. N1 sends the following modified request, with its new IPv4
address.

<tunnel action="create" type="v6v4">
<client>
<address type="ipv4">192.0.3.1</address>

</client>
</tunnel>

The broker responds with the tunnel information.

<tunnel action="info" type="v6v4" lifetime="1440">
<server>
<address type="ipv4">192.0.1.1</address>

<address type="ipv6"> 3ffe:b00:0:1::</address>
</server>
<client>

<address type="ipv4">192.0.3.1</address>
<address type="ipv6"> 3ffe:b00:0:1::1</address>

</client>
</tunnel>

The broker sends the same IPv6 addresses as before because it authenticates the client
each time a TSP session is established with the broker.

16.2.9.14 IPv4 in IPv6 Tunnels

TSP is generic enough to also handle IPv4 in IPv6 tunnels, discussed in Section 17.1.4.

16.2.9.15 Ubiquitous IP Connectivity

The TSP handling of IPv6 in IPv4, IPv6 in IPv4 with NAT traversal and IPv4 in IPv6
enables the client to be connected to both IP networks in all cases, so the user will not
experience delays or lack of functionality because the applications use one or the other
IP protocol. Over time, there will be IPv4-only applications that cannot be upgraded, dual
IP applications and IPv6-only applications, with their respective servers. TSP enables a
node to use all applications whatever its default connectivity. Mobile nodes changing their
connectivity such as laptops, PDAs, cell phones and WIFI devices are connected to both IP
networks whichever IP protocol is supported by the network point of attachment.

Figure 16.36 shows an example of such a situation. The node moves from A where IPv4
connectivity is available, to B where IPv4 connectivity is available behind a NAT, to C
where IPv6 connectivity is available.
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B) 10.1.1.1
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IPv4

IPv6

IPv6 in  UDP IPv4

IPv6 in IPv4

IPv4 in IPv6

TB

TSINAT

N1

N1

N1

TSP

TSP TSP

Figure 16.36 TSP providing ubiquitous IP connectivity

With TSP tunnel brokers, the node negotiates IPv6 connectivity for the first two cases
and IPv4 for the last one. In all cases, after the tunnel is established, the node is connected
to both IP networks seamlessly. IPv4 in IPv6 encapsulation is discussed in Section 17.1.4.

16.2.9.16 Broker Redirect

In some situations, a broker is not able to fulfill the tunnel request of a client. Such situations
are listed below:

• The maximum number of tunnels is reached on the broker.
• The client is requesting a /48 prefix but the server AAA policies do not allow the provision

of such prefix lengths.
• The client TSP protocol version number is higher than the one supported by the broker.

If configured with other brokers information, the broker suggests to the client to connect
to the other brokers. An example of such a transaction, where the maximum number of
tunnels is achieved, follows.

<tunnel action="create" type="v6v4">
<client>
<address type="ipv4">192.0.2.1</address>

</client>
</tunnel>

The broker cannot fulfill the request due to the maximum number of tunnels reached. It
responds with a list of possible brokers. In the example below, it lists two brokers, one by
its IPv4 address, the other by its hostname.
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1301 No tunnels available
<tunnel action="list" type="broker">
<broker>
<address type="ipv4">1.2.3.4</address>

</broker>
<broker>
<address type="dn">tspbroker.isp1.com</address>

</broker>
</tunnel>

The client then closes the current TSP session with the broker and starts a new session
with one of the listed brokers.

This capability could also be used to offer redundancy and backup service. As with an
NAS when all modems are busy, the call is forwarded to another POP, and the broker could
redirect the client to other brokers in the same administrative domain or elsewhere.

16.2.9.17 Requirements

The requirements to deploy the TSP tunnel broker solution are:

• The node is dual-stack.
• The node implements the TSP protocol as a TSP client and supports configured tunnels.
• The TSP tunnel broker implements the TSP protocol.
• The TSP tunnel broker has access to a tunnel server.
• The tunnel server is dual-stack, supports configured tunnels and is connected to the IPv6

network. A tunnel server may be implemented within the same software as the tunnel
broker.

• Hosts behind a TSP router client do not need to support or know about TSP and may only
be IPv6 enabled.

16.2.9.18 Limitations

If the network distance between the TSP client and the tunnel server is large, then the round
trip time might be high. However, this limitation also applies to the 6to4 relay. Nearer tunnel
servers can be deployed using an anycast IPv4 address as with the 6to4 relay.

The NAT traversal technique used in the TSP tunnel broker solution ensures that for all
kinds of NATs the tunnel can be established. Teredo does not work for symmetric NATs,
while TSP tunnel broker works with symmetric NATs. However, for NAT traversal, the
tunnel broker and the tunnel server must be co-located, since the TSP channel opened over
UDP to the broker is used for both TSP and IPv6 traffic. This co-location makes it more
difficult to split the load between multiple servers.

16.2.9.19 Applicability

The TSP tunnel broker is applicable as an IPv6 network access server over the IPv4 network,
as a IPv6 VPN server, or as a Mobility server, similar to the MobileIP Home Agent.
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TSP tunnel broker as a network access server
The TSP tunnel broker provides IPv6 connectivity over IPv4 networks, for nodes and
networks, for mobile devices, through NAT, and with AAA. A TSP tunnel broker can be
compared to an IPv4 network access server (NAS), as shown in Figure 16.37.

A typical NAS provides IPv4 connectivity to remote PCs using modems, where the point-
to-point protocol (PPP) is used as a control channel to establish the connection between
the PC and the NAS and as the data channel to carry IPv4 packets through the telephone
network onto the IPv4 network.

Mapped into the TSP tunnel broker model, the PPP control channel is now the TSP
protocol and the PPP data channel is the encapsulation of IPv6 in IPv4 packets, carrying
IPv6 packets through the IPv4 network onto the IPv6 network. Figure 16.38 shows the TSP
tunnel broker.

Table 16.11 compares the functionalities of the two models: PSTN-IPv4 NAS and IPv6-
IPv4 TSP tunnel broker.

As Table 16.11 shows, a TSP tunnel broker can be considered as an IPv6 access
server.

IPv4
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IPv4 
application
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Access 
Server

Figure 16.37 PSTN-IPv4 Network Access Server

IPv6IPv4 TB+TS

IPv6 IPv6 
application
serverIPv6 in IPv4

Figure 16.38 Tunnel Broker as an IPv6-IPv4 NAS

Table 16.11 Comparison between NAS and TSP tunnel broker

Functionality PSTN-IPv4 NAS TSP tunnel broker

Client PC PC or router
Access network (layer 2) Telephone network IPv4 network
Interface to the access network Modem Tunnel virtual interface
Control channel PPP TSP
Data channel PPP IPv6 in IPv4 encapsulation
Access device Network Access Server TSP Tunnel Broker
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TSP tunnel broker as a VPN server
The overlay of IPv6 on a layer 3 network (IPv4) makes the TSP tunnel broker behave as
an IPv6 VPN server, providing IPv6 virtual private networking over IPv4 networks, such as
the public IPv4 Internet.

Figure 16.39 shows an IPv4 VPN server where the IPsec layer, including the IKE protocol,
provides both the control channel and the encapsulation for IPv4 VPNs.

Figure 16.40 shows the TSP tunnel broker acting as an IPv6 VPN server.

TSP tunnel broker as a mobility server
Providing IPv6 in IPv4 tunnels, IPv6 in UDP-IPv4 tunnels traversing NATs and IPv4 in IPv6
tunnels, the TSP tunnel broker enables a mobile node or mobile network to stay connected in
all circumstances, as described in Section 16.2.9.15 on ubiquitous IP. The TSP tunnel broker
could be considered in MobileIP terminology as a Home Agent serving mobile nodes or
networks with tunnels over different IP networks. Figure 16.41 shows a TSP tunnel broker
acting as a mobility server. Mobile IP is discussed in Chapter 11.

16.2.10 Teredo

‘Teredo navalis’ is the Latin name for a little saltwater critter that digs wormholes in wooden
boats. Teredo [Huitema, 2005] enables nodes to tunnel IPv6 over IPv4 through NATs. The
analogy of the author is related to digging a hole in the NAT boat. The critter only lives in
clear water, which also has the analogy of IPv6 being a clear and transparent solution for
the Internet2.
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Figure 16.39 IPv4 VPN server

IPv4

IPv4
IPv6

IPv4

TSP Tunnel
Broker

IPv6 in IPv4

control channel
TSP/IPv6 TSP/IPv6 IPv6 

application
server

Figure 16.40 TSP Tunnel Broker as IPv6 VPN server

2 The author started by naming the transition mechanism ‘shipworm’, but people commented that it had a negative
image. ‘Teredo’ and ‘shipworm’ are two names for the same mechanism.
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Figure 16.41 TSP tunnel broker as mobility server
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Figure 16.42 Teredo components

A node implementing the Teredo client, receives an IPv6 address from a Teredo
server and traverses IPv4 NAT using IPv6 over UDP-IPv4 encapsulation, as discussed in
Section 16.2.8.

Teredo is based on the following components, as shown in Figure 16.42:

• Teredo client: node A in the figure;
• Teredo server;
• Teredo relay.
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16.2.10.1 Addressing

As with 6to4, Teredo uses a special prefix to provide an IPv6 address to nodes. At the time
of writing, this prefix is not yet assigned by IANA, and only will be when Teredo is a
standard-track RFC.

A Teredo address, as shown in Figure 16.43, has the following components:

• Teredo IANA assigned prefix: 32 bits;
• Teredo server IPv4 address: 32 bits;
• flags: 16 bits (described in Table 16.12);
• port number of the external NAT mapping of the client: 16 bits;
• IPv4 address of the external NAT mapping of the client: 32 bits.

Each component of a Teredo address is used to establish the tunneling.
The flags field is used to identify the NAT type3 Two values are possible, thus the use of

1 bit, named the Cone bit, as listed in Table 16.12.
This Cone bit in the address enables Teredo to optimize the path when possible.
It is reported by the Teredo author that some NAT implementations look inside IPv4

packets to find IPv4 addresses and change them to the mapped external address. To avoid this
processing, the IPv4 address and port number put in the interface identifier are obfuscated
by applying an exclusive OR with 0xFFFFFFFFFFFF.

16.2.10.2 Tunneling Mechanism

The Teredo rationale is to perform path optimizations when certain types of NAT are in the
path. The first step for a client is to find the type of NAT and to get an IPv6 address.

32

Teredo Prefix
Server 

IPv4 address
Interface identifier

32

32

Flags Port
Client

IPv4 address

64

16 16

Figure 16.43 Teredo address format

Table 16.12 Cone bit in the flags field of
the Teredo address

Value Description

0x0000 NAT type is cone
0x8000 NAT type is not cone

3 NAT types are described in the book Web site: http://www.ipv6book.ca.
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Finding the NAT type and getting an address
To distinguish between NAT types, a mapping must be triggered by an outgoing packet to
a target address and a reply using another address should be sent back. If the reply reaches
the internal node, then the NAT is a cone. If the reply from the other address is discarded
by the NAT, then it is either a restricted, port restricted or symmetric NAT. When a cone
NAT is present, the Teredo client can make some path optimizations.

To discover the NAT type, the Teredo client first goes through a series of tests with the
Teredo server. The Teredo client must be preconfigured with the two IPv4 addresses of the
Teredo server. The Teredo protocol uses modified versions of IPv6 router solicitation (RS)
and router advertisement (RA) messages, named here Teredo RS (TRS) and Teredo RA
(TRA), over UDP-IPv4.

Through multiple packet exchanges, this process accomplishes two goals for the Teredo
client: identifying the NAT type and getting an IPv6 address. The RA sent by the Teredo
server contains the IPv6 prefix for the Teredo client. The IPv6 /64 prefix is made with
the Teredo prefix (32 bits) and the Teredo server IPv4 address (32 bits), as shown in
Figure 16.43. The Teredo client autoconfigures itself by generating the interface identifier
part using the following components: flags (16 bits), the port number of the external NAT
mapping (16 bits) and the IPv4 address of the external NAT mapping (32 bits), the last two
being received inside the TRA as a special field called origin, within the TRA packet.

Sending IPv6 packets using Teredo
Figure 16.44 shows an example of Teredo components:

• Teredo client (C1);
• NAT (N1);
• Teredo server (S1);
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Figure 16.44 Network example of Teredo components
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• Teredo relay (R1);
• Non-Teredo IPv6 node B.

This figure is used for the next flow descriptions.

Sending an IPv6 packet from a Teredo client to a non-Teredo IPv6 node
When a Teredo client sends an IPv6 packet to a non-Teredo IPv6 destination, many packet
exchanges are completed before sending the packet.

Table 16.13 describes the steps of Figure 16.45. Step 0 is holding the IPv6 packet to be
sent to the IPv6 destination: the first packets to new destinations are buffered until the next
steps are completed. Steps 1 to 18 are done to open a new hole in the NAT of the Teredo
client to reach directly the Teredo relay used by the IPv6 destination. However, the Teredo
relay is unknown to the Teredo client, and will only be known when the IPv6 destination
sends an IPv6 packet to the Teredo client. The assumption here is that the total path from the
Teredo client to NAT to IPv4 Internet to Teredo relay to IPv6 Internet to the IPv6 destination
is much shorter than the path from the Teredo client to NAT to IPv4 Internet to Teredo
server to IPv6 Internet to the IPv6 destination.

Steps 1 to 5 are a ping sent from Teredo client C1 to the non-Teredo IPv6 destination
node B. By replying to the ping (step 6), the IPv6 destination reaches its nearest Teredo
relay. Steps 7 to 15 punch the new hole in the NAT for the relay. Steps 16 to 18 are the
reply ping packet, which tells the Teredo client that the hole is punched. Steps 19 to 23 are
the IPv6 packet sent from the Teredo client to the IPv6 destination, using the direct mapping
to the Teredo relay.

Since most of the IPv6 Internet nodes will probably not be Teredo nodes, each new
connection to a new destination node initiated by the Teredo client starts this whole process
again.

Sending an IPv6 packet from a non-Teredo IPv6 node to a Teredo client
When a non-Teredo IPv6 node sends a packet to a Teredo node, the IPv6 source node
does not do any special processing. The IPv6 packet will reach the closest Teredo relay
announcing the Teredo prefix on the IPv6 Internet. Given that the relay has no prior opened
mapping on the NAT in front of the Teredo node, a bubble round trip is used to open a
new mapping from the Teredo client to the relay. Then the IPv6 original packet is sent to
the Teredo client, through the NAT. Since most of the IPv6 Internet nodes are not Teredo
nodes, each new connection to a Teredo node initiated by an IPv6 internet node starts this
whole process again.

Sending an IPv6 packet from a Teredo client to another Teredo client
When a Teredo client sends an IPv6 packet, the IPv6 destination address is checked against
the Teredo prefix. If the destination is another Teredo client, then both clients initiate bubbles
to open their respective NATs for direct communication between the NATs without going
through Teredo relays or servers.

If the two Teredo clients are on the same link, Teredo has a discovery mechanism
[Huitema, 2005] using an IPv4 multicast address to send bubbles between the two Teredo
client.

If the two Teredo clients are not on the same link but behind the same NAT, the direct
communications between the two, after the initial discovery process, involve the routing of
packets on the external loopback virtual interface of the NAT. Not all NAT implementations



322 Migrating to IPv6

Table 16.13 Teredo client packet to non-Teredo node

Description

0 The Teredo client wants to send an IPv6 packet to an IPv6
destination, which does not have a Teredo address. The Teredo
client holds the IPv6 packet in a buffer before sending.

1 The Teredo client sends a IPv6 ping to the destination, encapsulated
in UDP-IPv4, with the IPv4 destination address of its Teredo server
(S1).

2 The source IPv4 address and port number are mapped by the NAT
(N1).

3 The IPv6 ping packet encapsulated in UDP-IPv4 is received by the
Teredo server S1.

4 The Teredo server decapsulates the IPv6 ping packet.
5 The Teredo server S1 sends the IPv6 ping packet directly to B over

the IPv6 network.
6 B sends the IPv6 ping reply to the C1 address.
7 Based on IPv6 routing, the nearest Teredo relay advertising the

Teredo prefix receives the IPv6 ping reply with destination C1. The
relay holds the IPv6 reply ping packet in a buffer.

8 Teredo relay R1 sends an IPv6 in UDP-IPv4 bubble to C1, with
destination IPv4 address of S1.

9 Teredo server S1 receives the bubble and forwards it to C1.
10 NAT N1 receives the bubble and forwards it to C1 remapping the

destination IPv4 address and port.
11 Teredo client C1 receives the bubble.
12 Teredo client C1 replies with an IPv6 in UDP-IPv4 bubble to the

Teredo relay R1, without going through Teredo server S1.
13 NAT N1 creates a new mapping for connection going to the Teredo

relay R1.
14 Bubble is forwarded to Teredo relay R1. Relay knows now that a

specific mapping on the Teredo client NAT (N1) is made for
sending packets from the relay directly to the client without going
through the Teredo server (S1).

15 IPv6 reply ping packet queued from step 7 is now encapsulated
over UDP-IPv4.

16 Encapsulated packet is sent by relay to C1 through NAT N1.
17 NAT N1 forwards the IPv6 ping reply packet in UDP-IPv4 to C1,

using the new mapping enabled in step 13.
18 Ping reply is received by Teredo client C1. Now the client knows

that a new path is established between the client and the relay
through a specific mapping done in the NAT.

19 IPv6 packet queued in step 0 is now sent over UDP-IPv4, with the
destination IPv4 address of Teredo relay R1.

20 The source IPv4 address and port number are mapped by the NAT
(N1).

21 Encapsulated packet is received by Teredo relay R1.
22 Teredo relay R1 decapsulates the IPv6 packet.
23 Teredo relay R1 sends the native IPv6 packet on the IPv6 network

to the IPv6 destination B.
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Teredo client (Cl) NAT  (Nl) Teredo server (S1) Teredo relay (Rl) IPv6 destination (B)

0. Hold the v6 packet to B 
1. Ping v6 to B 
over v4 to S1 2. src IPv4+ port 

translated
3. Ping v6 to B 
over v4 to S1

9. Bubble to C1 
through NAT

4. Decapsulation 5. Ping v6 to B

8. Bubble to C1  
through S1 over v4  
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 translated 
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21. v6 packet to B
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Figure 16.45 Flow of Teredo client packet to non-Teredo node

do this process, and if this is the case Teredo nodes cannot communicate at all between
them. If a provider for the home is offering IPv4 connectivity with private address space
behind a NAT, then all homes using Teredo cannot communicate IPv6 with each other.

16.2.10.3 Requirements

The requirements to deploy Teredo are:

• IPv6 nodes must be dual-stack.
• IPv6 nodes implement Teredo.
• A Teredo server connected to the IPv4 Internet and IPv6 Internet is available for the

Teredo clients.
• Many Teredo relays are available and well dispersed in the IPv4 Internet and IPv6 Internet.
• No symmetric NAT exists between the Teredo node and the Teredo server.
• The Teredo server IPv4 addresses must be statically configured in all Teredo clients.

16.2.10.4 Limitations

Teredo addressing embeds the Teredo server IPv4 address, the Teredo client mapped IPv4
address and the Teredo client mapped port. This dependency on the IPv4 address makes the
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use of Teredo limited to nodes that do not need a permanent or stable IPv6 address. Since
the lifetime of the Teredo address could be as short as 30 seconds, a Teredo client cannot
use its address for any published service. Teredo clients are really dumb nodes.

Initial communications between Teredo clients and IPv6 nodes or other Teredo clients
are buffered while the Teredo hole punching and relay discovery phases happen. Combined
with possible delays in these phases and the possible timeouts at all steps, it means the
perception of the user is a slow service for any new communication. When a Web page
is loaded with 50 references from different IPv6 Web sites, each reference would generate
many hole punching, round-trip bubbles, etc.

The buffering of initial IPv6 packets in Teredo relays, servers and clients means additional
important memory buffers for relays. For high speed streaming or peer-to-peer multimedia
file exchange between a large number of users, this buffering will adversely affect the
performance of the Teredo platform.

For providers, offering a Teredo relay service means an open transit service, with no way
to charge. Therefore, Teredo relays might not be a popular service to offer given that it will
require substantial bandwidth for these providers coupled with the inability to charge for the
service. Moreover, the first Teredo relays will be hit more heavily than when many relays
are available.

Teredo makes a lot of assumptions about the NAT behavior. This is based on experimental
results from trying different vendors implementations at specific points in time. Not only
were all vendors not tried, but there is no guarantee that the observed behaviors will remain
in the subsequent releases of those NAT products. Teredo might not function because of
some new or non-observed NAT behavior. These behaviors have never been standardized,
but an effort was made to document some [RFC3022].

Teredo does not work if a symmetric NAT is in the path between the Teredo client and
the Teredo server. A Teredo client in this situation gets no IPv6 connectivity. Symmetric
NATs are known to be used in enterprises [RFC3489] because they implement the most
secure way to translate IP addresses and ports.

The deployment of Teredo will not be very efficient if only a few Teredo relays are
available. Poor response time and long paths will be the result. Teredo deployment depends
on the relative high availability and connectivity of a significant number of Teredo relays
that are well dispersed in both the IPv4 Internet and the IPv6 Internet.

Teredo is a pretty complex protocol, which means there are possible security issues in the
protocol or implementation, interoperability problems between implementations, difficulty
with making the implementation efficient, etc.

Also, Teredo assumes that the Teredo relay will always be the best path between
two endpoints. This is not always the case and traffic engineering cannot be done with
Teredo.

Another problem is that Teredo puts states everywhere in the Teredo network: clients,
servers and relays keep a lot of states of current connections, bubbles in progress, etc.
Adding states in the network results in a network with much less reliability in the case of
the failure of one of its components. No state in the network is the basic design assumption
of IP.

Finally, Teredo clients behind the same NAT but not on the same link might not be
able to communicate. In this case, the Teredo clients have no way to communicate using
IPv6.
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16.2.10.5 Applicability

Given the above limitations, Teredo applicability is restricted. It works for isolated IPv6
nodes behind some types of NAT where there is no need for a stable IPv6 address. It does
not work for mobile hosts that are connecting behind different kinds of NAT as they travel.
It does not provide a prefix to a mobile network.

The Teredo deployment needs IANA to assign a Teredo prefix. This prefix will be put in all
Teredo implementations: clients, servers and relays. Until then, it will not be a standardized
service deployable on any large scale.

16.3 Tunneling IPv6 in GRE-IPv4

Generic Route Encapsulation (GRE) [RFC2784] is a specification for encapsulating one
protocol packet into another protocol packet. The inner packet is put in the payload of the
outer packet with a GRE header, as shown in Figure 16.46. IPv6 with GRE in IPv4 is shown
in Figure 16.47.

The IPv4 header protocol field has the value of 47, identifying that the payload of the
IPv4 packet is a GRE packet. Inside the GRE header, the Protocol Type field contains the
layer 2 code points of the inner protocol. As shown in Figure 6.3, the IPv6 layer 2 protocol
code point is 0x86dd, so the GRE protocol type field has a value of 0x86dd to identify the
inner packet as IPv6.

Inner protocol 
packet

Inner protocol 
packet

Outer protocol 
header

GRE 
header

Figure 16.46 GRE encapsulation

IPv6 
packet

IPv6 
packet

GRE 
header

IPv4 
header

Figure 16.47 GRE encapsulation of IPv6 packets in IPv4



326 Migrating to IPv6

16.3.1 Requirements

The two tunnel endpoints are IPv4, IPv6 and GRE enabled, and are reachable by the other
party.

16.3.2 Limitations

GRE tunnels have the same limitations as static tunnels, described in Section 16.2.4. Manual
configuration of the tunnel endpoints is tedious if:

• many tunnels have to be done;
• the IP addresses have to be changed for many tunnels.

A GRE tunnel over IPv4 uses the IPv4 addresses of both endpoints, so it cannot traverse
a NAT.

16.3.3 Applicability

GRE is useful when multiple protocols have to be tunneled within the same tunnel. In these
environments, adding IPv6 as another protocol over the same established tunnels is useful.
For example, if a GRE tunnel is established to carry IS-IS traffic, then the same tunnel could
be used for the IPv6 traffic. Otherwise, direct IPv6 in IPv4 tunneling is more efficient, given
the GRE header tax added to each packet.

16.4 Comparing IPv6 in IPv4 Solutions

Table 16.14 summarizes the differentiating features of the solutions discussed in this chapter.
This table is an initial reference tool and should not be considered as comprehensive. All
solutions enable IPv6 in IPv4 tunnels for host clients.

The best solution for one specific environment depends on the requirements. Chapter 23
describes typical deployment scenarios.

16.5 Configuring IPv6 in IPv4 Dominant Networks

This section describes the configuration of static IPv6 in IPv4 tunnels, 6to4, ISATAP, TSP
tunnel broker, GRE and Teredo for the various implementations.

16.5.1 Examples

The following network examples are used to describe the configurations of hosts and routers
implementations.

Figure 16.48 shows an IPv6 in IPv4 static tunnel between node N1 and router R1, where
N1 has 192.0.2.1 and 3ffe:b00:1:1::1 addresses and R1 has 192.0.3.1 and 3ffe:b00:1:1::2.
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Table 16.14 Comparison of the different IPv6 in IPv6 in IPv4 solutions

Static
tunnels

6to4 ISATAP Tunnel
broker
with TSP

Teredo

NAT traversal NO NO NO YES YES
Network clients NO YES NO YES NO
IPv6 prefix delegation NO YES∗ NO YES NO
IPv6 address not dependent

on IPv4 address
YES NO NO YES NO

Without authentication YES YES YES YES YES
With authentication NO NO NO YES NO
Accounting NO NO NO YES NO
Change of IPv4 address

does not change IPv6
address or prefix

YES NO NO YES NO

The tunnel is kept up even
when the IPv4 address
changes

NO NO NO YES NO

Applicability Very few
tunnels

Small
networks

Inside an
enterprise
network

Provider,
enterprise
and NAT
traversal

Isolated
hosts behind
NAT

One enabled gateway
enables the nodes behind
to get connectivity
without needing the
transition mechanisms
implemented in the
nodes

NO YES NO YES NO

The border router does not
need to support the
transition mechanism

YES NO YES YES YES

IPv4 in IPv6 NO NO NO YES NO
Redundancy NO NO NO YES SOME
Load balancing NO NO NO YES SOME

∗ The IPv6 prefix, however, is bound to the IPv4 address. Issues with IPv4 address bindings are
discussed in Section 16.2.7.6.

IPv4 = 192.0.2.1
IPv6 = 3ffe:b00:1:1::1

IPv4 = 192.0.3.1
IPv6 = 3ffe:b00:1:1::2

IPv4

IPv6 in IPv4 IPv6N1
R1

Figure 16.48 Static tunnel example
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2002:c000:301:1::1 2002:c000:301::/48

IPv6
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IPv6
Internet
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Figure 16.49 6to4 example

Figure 16.49 shows the 6to4-enabled router R1 with 192.0.2.1 address. Based on the R1
IPv4 address, the 6to4 prefix is then 2002:c000:201::/48. The 6to4 relay is R2 with 192.0.3.1
address.

Figure 16.50 shows an ISATAP tunnel configured on N1 with 192.0.2.1. The ISATAP
router is R1 with 192.0.3.1 address. The ISATAP prefix advertised is 3ffe:b00:1:1::/64.

Figure 16.51 shows an IPv6 in IPv4 tunnel between node N1 and the TSP tunnel broker
TB1, where the tunnel broker and server are co–located. N1 has 192.0.2.1 and TB1 has
192.0.3.1.

After the TSP transaction, N1 has 3ffe:b00:1:1::1 as its tunnel endpoint IPv6 address and
the broker has 3ffe:b00:1:1::2 as its IPv6 address for this tunnel.

192.0.2.1
fe80::5efe:c000:0201

3ffe:b00:1:1::5efe:c000:0201

192.0.3.1
fe80::5efe:c000:0301

3ffe:b00:1:1::5efe:c000:0301

N1

IPv4

IPv6

R1
ISATAP

IPv6 in IPv4

Figure 16.50 ISATAP example

IPv4

TSP
N1

IPv4 = 192.0.2.1
IPv6 = 3ffe:b00:1:1::1

IPv4 = 192.0.3.1
IPv6 = 3ffe:b00:1:1::2

IPv6
IPv6 in IPv4 TB+TS

Figure 16.51 Tunnel broker example
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16.5.2 FreeBSD

FreeBSD supports static tunnels through the ‘gif’ interface, 6to4 through the ‘stf’ interface
and TSP tunnel broker through the tsp/freenet6 client.

16.5.2.1 Static IPv6 in IPv4 Tunnels

IPv6 in IPv4 tunnels in FreeBSD is implemented as gif interfaces. These interfaces can
also be used for IPv4 in IPv6, IPv4 in IPv4 and IPv6 in IPv6 encapsulations. They are
clonable devices using the create argument of the ifconfig command. The tunnel
argument specifies the IPv4 outer source and destination addresses. The IPv6 inner addresses
are defined by the inet6 argument.

The following commands configure an IPv6 in IPv4 static tunnel, as in Figure 16.48.

# ifconfig gif0 create
# ifconfig gif0 tunnel 192.0.2.1 192.0.3.1 up inet6
3ffe:b00:1:1::1 3ffe:b00:1:1::2 prefixlen 64 alias

To store this configuration, use the ipv6_ifconfig_gif0 variable in the
/etc/rc.conf file.

To forward all IPv6 traffic through this static tunnel, use the route add default
command, as shown below.

# route add -inet6 default 3ffe:b00:1:1::2

16.5.2.2 6to4

6to4 is implemented as a virtual interface named ‘stf’ in FreeBSD. The whole 6to4 network
is seen as a virtual link by setting the prefix length to 16. Setting the prefix length to /48
would enable communications to within the site only. The following command configures
the 6to4 interface, as in Figure 16.49.

# ifconfig stf0 inet6 2002:c000:201:1::1 prefixlen 16 alias

To save this configuration permanently, set the stf_interface_ipv4addr variable
in the /etc/rc.conf file to the IPv4 address used for the 6to4 prefix.

# cat /etc/rc.conf
stf_interface_ipv4addr="192.0.2.1"

To forward all IPv6 traffic through the 6to4 relay, use the route add default com-
mand pointing to the IPv6 address of the 6to4 relay, as shown below.

# route add -inet6 default 2002:c000:301:1::1
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16.5.2.3 TSP Tunnel Broker Client

The TSP tunnel broker client is available on FreeBSD in the ports/net/freenet6, or from the
freenet6 Web site (http://www.freenet6.net) or from Hexago directly.

The TSP tunnel broker client on FreeBSD uses the ‘gif’ interface for the IPv6 in IPv4
tunnels and the ‘tun’ interface for the IPv6 in UDP IPv4 tunnels. The ‘tspc.conf’
file, used to configure the client, is discussed in Section 16.5.7.2. In the ‘tspc.conf’
file, the variable-value pairs shown in Table 16.15 (from Table 16.20) are specific to
FreeBSD.

The TSP client is run in the command line as ‘tspc’. Its configuration file is usually
placed in ‘/usr/local/etc/tspc.conf’.

For additional information on the TSP tunnel broker client, see Section 16.5.7.2.

16.5.3 Linux

Linux supports static tunnels through the ‘sit’ interface, 6to4 through a generic inter-
face, ISATAP through the ‘is’ interface and TSP tunnel broker through the tsp/freenet6
client.

16.5.3.1 Static IPv6 in IPv4 Tunnels

Linux has the ‘ifconfig’, ‘route’ and ‘ip’ commands (part of the iproute package) to
create tunnels.

The following commands configure an IPv6 in IPv4 static tunnel using interface sit0,
as in Figure 16.48.

# ip tunnel add sit0 mode sit ttl 64 remote 192.0.3.1
# ifconfig sit0 up
# ifconfig sit0 add 3ffe:b00:1:1::1/128

To forward all IPv6 traffic through this static tunnel, use the route add command, as
shown below.

# route -A inet6 add 2000::/3 dev sit0

Note the use of 2000::/3 as the default route, since Linux kernels do not like IPv6 default
routes.

Table 16.15 TSP Tunnel Broker Client Configuration for FreeBSD

Variable Value Description

template freebsd script template file
if_tunnel_v6v4 gif0 interface name for IPv6 in IPv4 tunnels
if_tunnel_v6udpv4 tun interface name for IPv6 in UDP IPv4 tunnels



Deploying IPv6 in IPv4 Dominant Networks 331

16.5.3.2 6to4

6to4 is implemented as a virtual interface in Linux, below named ‘tun6to4’. The whole
6to4 network is seen as a virtual link by setting the prefix length to 16. The following
commands configure the 6to4 interface, as in Figure 16.49.

# /sbin/ip tunnel add tun6to4 mode sit ttl 64 remote any local
192.0.2.1
# /sbin/ip link set dev tun6to4 up
# /sbin/ip -6 addr add 2002:c000:201:1::1/16 dev tun6to4
# /sbin/ip -6 route add 2000::/3 via ::192.88.99.1 dev tun6to4
metric 1

Note the use of the 192.88.99.1 6to4 relay anycast address as the default gateway.

16.5.3.3 ISATAP

ISATAP is implemented in Linux using the ‘is’ interface and the tunnel mode ‘isatap’.
The following commands configure the ISATAP interface, as in Figure 16.50.

# ip tunnel add is0 mode isatap local 192.0.2.1 ttl 64
# ip link set is0 up
# ip addr add 3ffe:b00:1:1::5efe:c000:0201/64 dev is0

16.5.3.4 TSP Tunnel Broker Client

The TSP tunnel broker client is included in many Linux distributions, or from the freenet6
Web site (http://www.freenet6.net) or from Hexago directly.

The TSP tunnel broker client on Linux uses the ‘sit’ interface for the IPv6 in IPv4
tunnels and the ‘tun’ interface for the IPv6 in UDP IPv4 tunnels. The ‘tspc.conf’ file,
used to configure the client, is discussed in Section 16.5.7.2. In the ‘tspc.conf’ file, the
variable-value pairs shown in Table 16.16 (from Table 16.20), are specific to Linux.

The TSP client is run in the command line as ‘tspc’.
For additional information on the TSP tunnel broker client, see Section 16.5.7.2.

16.5.4 Solaris

Solaris supports static tunnels through the ‘ip.tun’ interface, 6to4 through the
‘ip.6to4tun’ interface and TSP tunnel broker through the tsp/freenet6 client.

Table 16.16 TSP Tunnel Broker Client Configuration for Linux

Variable Value Description

template linux script template file
if_tunnel_v6v4 sit0 interface name for IPv6 in IPv4 tunnels
if_tunnel_v6udpv4 tun interface name for IPv6 in UDP IPv4 tunnels
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16.5.4.1 Static IPv6 in IPv4 Tunnels

Static IPv6 in IPv4 tunnels are configured using the ‘ifconfig’ command with
the ‘tsrc’, ‘tdst’ and ‘addif’ parameters. The parameters are put in the
‘/etc/hostname6.ip.tun0’ file to save the tunnel configuration permanently. The
files ‘/etc/hostname6.ip.tun1’, tun2, etc. are used for additional tunnels. The
‘tsrc’ and ‘tdst’ are the tunnel source and destination address of the outer packet (i.e.
IPv4 for an IPv6 in IPv4 tunnel). The ‘up’ parameter makes the interface live. This also
configures the link-local addresses by embedding the IPv4 tunnel addresses in the last 32
bits of the link-local prefix. Static IPv6 addresses are assigned to the tunnel endpoints with
the ‘addif’ parameter. The following file configures an IPv6 in IPv4 static tunnel, as in
Figure 16.48.

# cat /etc/hostname6.ip.tun0
tsrc 192.0.2.1 tdst 192.0.3.1
addif 3ffe:b00:1:1::1 3ffe:b00:1:1::2 up

The ‘ifconfig ip.tun0’ is used to look at the tunnel interface configuration.

# ifconfig ip.tun0

16.5.4.2 6to4

6to4 is implemented as a virtual interface named ‘ip.6to4tun’ in Solaris. The following
file configures the 6to4 interface, as in Figure 16.49.

# cat /etc/hostname6.ip.6to4tun0
tsrc 192.0.2.1 2002:c000:201:1::1/64 up

To forward all IPv6 traffic through the 6to4 relay, use the route add default com-
mand pointing to the IPv6 address of the 6to4 relay, as shown below.

# route add -inet6 default 2002:c000:301:1::1

16.5.4.3 TSP Tunnel Broker Client

The TSP tunnel broker client is available on Solaris from the freenet6 Web site
(http://www.freenet6.net) or from Hexago directly.

The TSP tunnel broker client on Solaris uses the ‘ip.tun’ interface for the IPv6 in IPv4
tunnels. The ‘tspc.conf’ file, used to configure the client, is discussed in Section 16.5.7.2.
In the ‘tspc.conf’ file, the variable-value pairs shown in Table 16.17 (from Table 16.20),
are specific to Solaris.

The TSP client is run in the command line as ‘tspc’.
For additional information on the TSP tunnel broker client, see Section 16.5.7.2.
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Table 16.17 TSP Tunnel Broker Client Configuration for Solaris

Variable Value Description

template solaris script template file
if_tunnel_v6v4 ip.tun0 interface name for IPv6 in IPv4 tunnels

16.5.5 Windows

Windows supports static IPv6 in IPv4 tunnels, 6to4, ISATAP, Teredo and TSP tunnel broker
client. It identifies interfaces by index numbers, where the index is incremented each time a
new physical or logical interface is configured. This makes it difficult to predict the index
number for a specific interface. The examples used in this section should therefore be adapted
to your environment.

16.5.5.1 Static IPv6 in IPv4 Tunnels

A tunnel interface is always created by default, and is usually interface #2. To configure a
static IPv6 in IPv4 tunnel, the add route and add address statements in the netsh
interface ipv6 command are used.

The following file configures an IPv6 in IPv4 static tunnel, as in Figure 16.48.

c> netsh interface ipv6 add route prefix=::/0 interface=2
nexthop=::192.0.3.1 publish=yes
c> netsh interface ipv6 add
address interface=2
address=3ffe:b00:1:1::1

The ‘netsh interface ipv6 add v6v4tunnel’ command can also be used for the
same purpose.

16.5.5.2 6to4

By default, Windows creates 6to4 addresses for all public IPv4 addresses assigned to all
interfaces. It also creates a 2002::/16 route to forward to the 6to4 tunneling pseudo-interface
(index=3). It also does an automatic DNS query to find a 6to4 relay router. The ‘6to4 set
relay’ statement is used to set a 6to4 relay manually.

c> netsh interface ipv6 6to4 set relay 192.0.3.1

16.5.5.3 ISATAP

Similar to 6to4, by default, Windows creates ISATAP link-local addresses for all pub-
lic IPv4 addresses assigned to all interfaces. It also does an automatic DNS query to
find an ISATAP router by querying ‘_ISATAP.example.org’ for Windows XP or
‘ISATAP.example.org’ for Windows2003, where example.org is the domain name of
the site. The ‘isatap set router’ statement is used to set an ISATAP router manually.
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c> netsh interface ipv6 isatap set router 192.0.3.1

For Windows to be an ISATAP router, configure the forwarding on the ISATAP interface
using the ‘set interface forwarding’ statement and define the ISATAP prefix using
the ‘set route’ statement, as shown below.

c> netsh interface ipv6 set interface 2 forwarding=enabled
advertise=enabled
c> netsh interface ipv6 set route 3ffe:b00:0:1::/64 2
publish=yes

16.5.5.4 Teredo

By default, Windows enables Teredo if the node is not part of a Microsoft domain. To set
the Teredo server, use the set teredo client statement. The following command sets
the Teredo server to 192.0.3.1.

c> netsh interface ipv6 set teredo client 192.0.3.1

When the node is part of a Microsoft domain, Teredo is disabled by default. It could be
enabled by using the set teredo enterpriseclient statement, as shown below.

c> netsh interface ipv6 set teredo enterpriseclient 192.0.3.1

Client ports and refresh interval can also be set.

16.5.5.5 TSP Tunnel Broker Client

The TSP tunnel broker client is available on Windows from the freenet6 Web site
(http://www.freenet6.net) or from Hexago directly.

The TSP tunnel broker client on Windows uses the interface numbered 2 for the IPv6
in IPv4 tunnels and a new interface for IPv6 in UDP IPv4 tunnels. The ‘tspc.conf’
file, used to configure the client, is discussed in Section 16.5.7.2. In the ‘tspc.conf’
file, the variable-value pairs shown in Table 16.18 (from Table 16.20) are specific to
Windows.

The TSP client is run in the command line as ‘tspc’ or installed as a Windows service.
For additional information on the TSP tunnel broker client, see Section 16.5.7.2.

Table 16.18 TSP Tunnel Broker Client Configuration for Windows

Variable Value Description

template windows script template file
if_tunnel_v6v4 2 interface name for IPv6 in IPv4 tunnels
if_tunnel_v6udpv4 6 interface name for IPv6 in UDP IPv4 tunnels
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16.5.6 Cisco

All Cisco IOS tunnel interfaces are defined using the ‘interface tunnel’ statement.
Each type of tunnel is defined with the ‘tunnel mode’ statement. The static IPv6 in IPv4
tunnel has the ‘ipv6ip’ mode, 6to4 has the ‘ipv6ip 6to4’ mode , ISATAP has the
‘ipv6ip isatap’ mode and GRE has the ‘gre ip’ mode.

16.5.6.1 Static IPv6 in IPv4 Tunnels

Cisco IOS implements IPv6 in IPv4 tunnels using the ‘interface tunnel’ statement
under which the ‘tunnel mode’ is set to ‘ipv6ip’.

The inner source IPv6 address is defined by the ‘ipv6 address’ statement and the outer
IPv4 source and destination addresses are defined by the ‘tunnel source’ and ‘tunnel
destination’ statements respectively.

The following statements configure an IPv6 in IPv4 static tunnel, as in Figure 16.48.

configure terminal
interface tunnel 0
ipv6 address 3ffe:b00:1:1::1/128
tunnel source 192.0.2.1
tunnel destination 192.0.3.1
tunnel mode ipv6ip

16.5.6.2 6to4

6to4 is implemented as a new ‘tunnel mode’, named ‘ipv6ip 6to4’, under a tunnel
interface.

The following statements configure the 6to4 interface, as in Figure 16.49.

configure terminal
interface tunnel 0
ipv6 address 2002:c000:201:1::1/64
tunnel source 192.0.2.1
tunnel mode ipv6ip 6to4

Since 6to4 tunnels are created on-demand based on the IPv6 destination address, there is
no ‘tunnel destination’ command used for 6to4 tunnels.

To forward all incoming 6to4 packets through the 6to4 interface, a specific 6to4 route
must be installed towards the 6to4 interface, as shown below.

configure terminal
route 2002::/16 tunnel 0

16.5.6.3 ISATAP

ISATAP is implemented as a new ‘tunnel mode’, named ‘ipv6ip isatap’, under a
tunnel interface.
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The following statements configure the ISATAP interface, as in Figure 16.50.

configure terminal
interface tunnel 0
ipv6 address 3ffe:b00:1:1::/64 eui-64
tunnel source 192.0.2.1
tunnel mode ipv6ip isatap

The ISATAP specific address is a specific EUI-64 form. By identifying this tunnel interface
as ISATAP and identifying the /64 prefix of the address, IOS automatically computes the
ISATAP full address (3ffe:b00:1:1::5efe:c000:0201).

16.5.6.4 TSP Tunnel Broker Client

A template for Cisco IOS configuration is available in the TSP tunnel broker client. The
client can be run on any platform such as Windows, FreeBSD and Linux and configured to
generate the Cisco IOS configuration, by specifying template=cisco.

The TSP tunnel broker client for Cisco IOS uses the ‘tunnel’ interface for the IPv6
in IPv4 tunnels. The ‘tspc.conf’ file, used to configure the client, is discussed in
Section 16.5.7.2. In the ‘tspc.conf’ file, the variable-value pairs shown in Table 16.19
(from Table 16.20) are specific to Cisco IOS.

For additional information on the TSP tunnel broker client, see Section 16.5.7.2.

16.5.6.5 Static IPv6 in GRE IPv4 Tunnels

A static IPv6 in GRE IPv4 tunnel is very similarly configured to a static IPv6 in IPv4 tunnel.
The only difference is the tunnel encapsulation mode specified as ‘tunnel mode gre ip’.
The following statements configure a GRE tunnel as in Figure 16.48.

configure terminal
interface tunnel 0
ipv6 address 3ffe:b00:1:1::1/64
tunnel source 192.0.2.1
tunnel destination 192.0.3.1
tunnel mode gre ip

16.5.7 Hexago

The Migration Broker is a TSP tunnel broker implementation. Its operating system, HexOS,
is configured by a CLI similar to other vendors.

Table 16.19 TSP Tunnel Broker Client Configuration for Cisco

Variable Value Description

template cisco script template file
if_tunnel_v6v4 tunnel 0 interface name for IPv6 in IPv4 tunnels
proxy_client yes client is not the tunnel end-point
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16.5.7.1 Static Tunnels

Static tunnels are configured using the ‘tunnel’ interface, where IPv6 addresses are
defined by the ‘ipv6 address’ statement and IPv4 addresses are defined by the ‘tunnel
source’ and ‘tunnel destination’ statements.

The following statements configure an IPv6 in IPv4 static tunnel, as in Figure 16.48,
where the tunnel broker is node N1 and the other tunnel endpoint is R1.

configure terminal
interface tunnel 0
ipv6 address 3ffe:b00:1:1::1/64
tunnel source 192.0.2.1
tunnel destination 192.0.3.1

Since the tunnel broker automates the establishment of static tunnels through the use of
the TSP protocol, static tunnels on the broker are rarely used.

Figure 16.52 shows an example where a static tunnel on the tunnel broker is used to
reach an IPv6 connected router when the tunnel broker is not directly connected to the IPv6
network.

The tunnel broker connects TSP clients such as N1 through the leftmost IPv4 network.
The broker has a static IPv6 in IPv4 tunnel with R1 through the center IPv4 network to reach
the IPv6 network on the right. A better scenario would be to co-locate the tunnel broker with
R1 to access the IPv6 network directly.

16.5.7.2 TSP Tunnel Broker Client

TSP is a control protocol to establish and maintain static tunnels. The TSP client is used on
the tunnel broker client to get the information of the tunnel. When the information is received,
it creates the static tunnel on its operating system. The TSP client code is mostly identical
for all client platforms. However, the creation of the static tunnel, which is operating system
dependent, is done by a shell script called by the TSP client. The shell script is targetted to
specific operating systems and takes care of all specificities. This separation enables fast and
easy additions to new operating systems, which is reflected by the community contributions
for many operating systems.

The TSP client is either available as part of the operating system distributions,
such as Linux or FreeBSD, as downloadable software from the Web site of the tun-
nel broker service such as Freenet6 (http://www.freenet6.net), or directly from Hexago
(http://www.hexago.com).

N1
IPv6 in IPv4

IPv4

TSP IPv4

IPv6IPv6 in IPv4

Static tunnel

TB+TS R1

Figure 16.52 Static tunnel on Tunnel Broker
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The TSP client is a single application ‘tspc’ with one configuration file ‘tspc.conf’
and shell scripts, available in the template directory, for each operating system. The con-
figuration file is a text file with comments using the ‘#’ character. Each statement has the
format variable = value, as in rc.conf files in FreeBSD. Most statements are optional and
are listed in Table 16.20.

Table 16.20 TSP client tspc.conf key statements

Variable Default value Possible values Description

auth_method any any
digest-md5
plain
anonymous

The authentication used
for the TSP session. The
digest-md5 method is
the most secure, where the
password is not sent. The
plain method sends
userid and password. The
anonymous method has
no userid and no password.
With any, the client uses
the most secure method
based on its capabilities and
broker authentication
capabilities.

userid anonymous anonymous
string

The user identification
string.

passwd string The password for the userid.

template checktunnel
cisco
darwin
freebsd
linux
netbsd
openbsd
solaris
windows

The script file used to create
the tunnel. The value is the
name of the script file in the
template directory which
will be called by the TSP
client at the end of the TSP
session, to create the tunnel.

server broker.
freenet6.net

ip_address
hostname
ip_address:port
hostname:port

The IP address or hostname
(full domain name when
appropriate) of the broker.
A TSP port number can be
specified.

tunnel_mode v6anyv4 v6v4
v6udpv4
v6anyv4
v4v6

The tunnel encapsulation
mode (see details in
Table 16.21).

if_tunnel_v6v4 string The tunnel interface on the
operating system of the
client used for IPv6 in IPv4
encapsulation.
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if_tunnel_v4udpv4 string The tunnel interface on the
operating system of the client
used for IPv6 inUDP IPv4
encapsulation.

host_type host host
router

Shows if the client is a host or a
router. In router mode, the TSP
client receives a prefix from the
broker.

prefixlen 0 0
48
64

The length of the prefix desired by
the client.

if_prefix string The interface on the operating
system of the client used to send
router advertisements with the
received prefix from the broker.

dns_server string The fully qualified domain name
of the DNS server for the reverse
DNS delegation of the prefix.

Table 16.21 Tunnel encapsulation mode keywords in tspc.conf

Tunnel mode keyword Description

v6v4 IPv6 in IPv4 encapsulation, using IPv4 protocol 41: does not work
through NAT.

v6udpv4 IPv6 in UDP IPv4 encapsulation: works through NAT.
v6anyv4 IPv6 in any IPv4 encapsulation. The tunnel broker will suggest the

right encapsulation method to the client based on its findings if a
NAT is in the path. If a NAT is found, then v6udpv4 is proposed
to the client, otherwise, v6v4 is proposed.

v4v6 IPv4 in IPv6 encapsulation.

Tunnel encapsulation modes are listed in Table 16.21. When ‘v6anyv4’ is sent by the
client, the broker tests if the client is behind a NAT and responds with the right encapsulation
mode.

A minimal tspc.conf file for anonymous use on a FreeBSD client to the freenet6 service
is shown below.

# cat tspc.conf
server=broker.freenet6.net

In this case, all defaults are applied and the requested tunnel has anonymous access. Without
a configuration file, one can use the command line to specify the broker, as shown below.

# tspc broker.freenet6.net

The ‘tspc’ program has some arguments to the command line, as described in Table 16.22.
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Table 16.22 Arguments to the ‘tspc’ program

Argument Description

−v Sets the verbose level and debugging
information sent on the screen. −vvv
gives the most debugging information,
such as the TSP XML content.

−vv
−vvv
−h Shows the list of options

When the TSP client finishes its transaction with the broker, it calls the shell script, named
by the template variable in the tspc.conf, in tsp_dir/template directory. All the information
needed to configure the tunnel is given as environment variables from the tspc program to
the shell script.

The TSP client command can be put in the DCHP client scripts so that every time the
DHCP client gets a new IPv4 address, the TSP tunnel request is sent and the tunnel is
re-established.

16.5.7.3 TSP Tunnel Broker

The TSP tunnel broker is the main function of the Hexago Migration Broker. It is imple-
mented with the following logical modules: tunnel broker, tunnel server, TSP listener and
Authentication, and Authorization and Accounting (AAA), as shown in Figure 16.53.

The high-level interactions between the modules are described in Table 16.23.
These four modules are configured each with a specific configuration object in the CLI.

One can define multiple tunnel brokers within the same Migration Broker, each could
instantiate multiple tunnel servers and multiple TSP listeners. TSP listeners instantiate an
AAA model.

The following examples describe a basic but complete configuration of the Migration
Broker for offering the tunnel broker service. Since the objects are referring to each other,
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Figure 16.53 TSP tunnel broker modules
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Table 16.23 Interactions between TSP tunnel broker modules

Module Description

1 TSP listener TSP client connects to the TSP listener
on the broker.

2 AAA TSP listener passes the received user
credentials to the AAA module for
authentication verification. The AAA
module compares the user credentials
using the database.

3 Tunnel broker If authentication is successful, the TSP
listener forwards the user tunnel request to
the broker. The broker assigns resources
for that tunnel: tunnel interface on the
tunnel server and IPv6 addresses.

4 Tunnel broker The tunnel broker saves the tunnel
information in the database.

5 Tunnel server The tunnel broker then configures the
tunnel server for that tunnel.

6 TSP listener The tunnel broker sends the tunnel info
to the TSP listener which forwards it to
the TSP client through the TSP session.

7 TSP listener TSP session is closed.

creating a hierarchy, the easiest way to configure the objects is to define them in order: pool
of addresses, tunnel server, aaa model, tsp listener and finally tunnel broker.

The ‘ipv6 local pool’ statement defines the range of IPv6 addresses that will be
allocated by the tunnel broker. A pool is defined for tunnel endpoints and one is defined
for the prefix allocation. In the configuration example below, P1 is the tunnel endpoint pool
consisting of /128 addresses taken out of a /64. P2 is defined as a pool of /48 prefixes taken
out of a /40 and will be used for prefix allocation.

ipv6 local pool P1 3ffe:b00:fe00::/64 128
ipv6 local pool P2 3ffe:b00:ff00::/40 48

The ‘tunnel server’ statement defines a tunnel server which will be the endpoint
of the client tunnels. The ‘interface range’ statement defines the number of tunnel
interfaces this tunnel server can create. The tunnel endpoint is an IPv4 address defined by
the ‘ip address’ statement. The IPv6 address pools are instantiated by the ipv6 pool
statement. The pool for endpoint addresses is referenced by ‘ipv6 pool endpoints’ and
the pool for prefixes is referenced by the ‘ipv6 pool prefix’ statement.

tunnel server TS1
interface range 0 2000
ip address 192.0.1.1
ipv6 pool endpoints P1
ipv6 pool prefix P2
tunnel mode v6v4
tunnel mode v6udpv4
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The tunnel server declares its encapsulation mode capabilities using the ‘tunnel mode’
statement. In the above example, the tunnel server has IPv6 in IPv4 (v6v4) and IPv6 in
UDP IPv4 (v6udpv4) encapsulation modes.

AAA is defined by the ‘aaa model’ statement. Within that object, the AAA authentica-
tion and authorization are defined. The A1 AAA model below defines that all users should
connect through the digest-md5 authentication mechanism. Other possible authentication
mechanisms are ‘anonymous’ and ‘plain’.

aaa model A1
aaa authentication digest-md5

The TSP listener is defined by the ‘tsp’ statement and is given an arbitrary name. The
process listens on an IPv4 address defined by the ‘ip address’ statement. This address
must be already configured on the Migration Broker. The listener also instantiates the
previously defined AAA model A1 by the ‘set aaa model A1’ statement to establish
which authentication method and policy is applied to connecting TSP users.

tsp TSP1
set aaa model A1
ip address 192.0.1.1
tunnel mode v6v4
tunnel mode v6udpv4

The TSP listener must declare which encapsulation modes are offered to the TSP client,
using the ‘tunnel mode’ statement.. In the example above, the TSP listener is offering the
IPv6 in IPv4 (v6v4) and IPv6 in UDP IPv4 (v6udpv4) encapsulation modes to TSP clients.
In most cases the TSP listener encapsulation modes should be the sum of the tunnel server
encapsulation modes attached to the tunnel broker. However, for policy reasons, one might
configure a TSP listener to offer only one encapsulation mode and another TSP listener to
offer another encapsulation mode.

The tunnel broker object is the last object defined that glues together all the TSP listeners
and the tunnel servers. The dtunnel range command defines the maximum number of
active tunnels offered on this broker.

tunnel broker TB1
dtunnel range 0 1000
set tsp TSP1
set tunnel server TS1

16.5.8 Juniper

JunOS supports static IPv6 in IPv4 tunnels and IPv6 in GRE IPv4.

16.5.8.1 Static IPv6 in IPv4 Tunnels

On Juniper platforms, tunnels are supported with the Tunnel PIC. The IP-in-IP tunnels are
configured with the ‘ip’ interface and the GRE tunnels with the ‘gr’ interface.
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The following statements configure an IPv6 in IPv4 static tunnel, as in Figure 16.48. Note
that the IPv6 address of the remote tunnel endpoint is not specified.

interfaces {
ip-0/0/1 {
unit 0 {
tunnel {
source 192.0.2.1;
destination 192.0.3.1;

}
family inet6 {
address 3ffe:b00:1:1::1/126;

}
}

}
}

A GRE tunnel for IPv6 is similarly configured using the ‘gr’ interface name.

interfaces {
gr-0/0/1 {
unit 0 {
tunnel {
source 192.0.2.1;
destination 192.0.3.1;

}
family inet6 {
address 3ffe:b00:1:1::1/126;

}
}

}
}

16.6 Summary

This chapter describes the various techniques and tools for migrating to IPv6 over current
IPv4 networks, such as dual-stacks, static IPv6 in IPv4 tunnels, 6to4, ISATAP, TSP tunnel
broker and Teredo. Considerations on tunneling are discussed. No single technique works in
all cases. The reader should refer to Section 16.4 to help identify the technique best suited
for his or her network.
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17
Deploying IPv6 Dominant
Networks with IPv4 Support

Chapter 16 discussed deploying IPv6 in IPv4 dominant networks, which is the common case
for the initial deployment of IPv6. However, the inverse case happens in new networks: here,
IPv6 is deployed as the dominant IP protocol and IPv4 legacy support is needed, but there
is no intention or need to deploy an IPv4 fully routed network. In this context, the IPv4 in
IPv6 tunneling methods, such as static tunnels, DSTM and TSP tunnel broker are used and
are discussed in this chapter.

17.1 Tunneling IPv4 in IPv6

As in Chapter 16, tunneling is used to overlay one IP protocol over another. In this section,
the IPv4 in IPv6 tunnels are described.

17.1.1 IPv4 in IPv6 Encapsulation

IPv4 packets are encapsulated in the payload of the IPv6 packet, as shown in Figure 17.1.
The Next Header field value in the IPv6 header, identifying an IPv4 packet inside the

IPv6 packet payload, is 4, as for IPv4 in IPv4 tunnels.

17.1.2 IPv4 in IPv6 Static Tunnels

IPv4 in IPv6 static tunnels are configured at each tunnel endpoint by the IPv4 and IPv6
address of the other endpoint, similar to IPv6 in IPv4 tunnels in Section 16.2.4. Figure 17.2
shows an example of an IPv4 in IPv6 static tunnel between two routers.

Migrating to IPv6: A Practical Guide to Implementing IPv6 in Mobile and Fixed Networks Marc Blanchet
© 2006 John Wiley & Sons, Ltd
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Figure 17.2 IPv4 over IPv6 tunnel between two routers

17.1.2.1 Requirements

The following requirements have to be met in this router to router configuration:

• Routers R1 and R2, the tunnel endpoints, are dual stack.
• IPv6 is the network between the tunnel endpoints.
• Tunnel endpoints must have a reachable address from each other.

17.1.2.2 Limitations

IPv4 in IPv6 static tunnels suffer the same limitations of manual configuration as the IPv6
in IPv4 tunnels described in Section 16.2.4.

17.1.2.3 Applicability

IPv4 in IPv6 static tunnels are applicable when a very small number of tunnels are needed.
The Dual Stack Transition Mechanism (DSTM) and TSP Tunnel Broker are designed to
automate the setup of IPv4 in IPv6 tunnels.
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17.1.3 DSTM with DHCPv6

DSTM [Bound, 2003] automates the configuration of IPv4 in IPv6 tunnels and defines three
components: the DSTM client, the DSTM server and the DSTM border router, shown in
Figure 17.3.

The DSTM client is a dual-stack node connected to an IPv6-only network. The DSTM
server is either a DHCPv6 server or a TSP server (discussed in Section 17.1.4). Using
DHCPv6, the DSTM client makes a DHCPv6 request over the IPv6 network to the DSTM
server acting as a DHCPv6 server. The client requests an IPv4 address and the IPv6 address
of the tunnel endpoint on the DSTM border router. The DSTM border router is the gateway
to the IPv4 network.

The DSTM specification [Bound, 2003] do not specify the protocol between the DSTM
server and the DSTM border router. When the DSTM server allocates IPv4 addresses and
tunnel endpoints, it must make sure the DSTM border router is configured to accept the
tunnels. The DSTM server functionality can also be co-located with the DSTM border router,
as shown in Figure 17.4.

DSTM provides non-NAT connections for IPv4 applications on the DSTM clients. If the
network and applications are mostly migrated to IPv6, DSTM provides a good alternative to
support legacy IPv4 applications that need IPv4 reachability.
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17.1.3.1 Requirements

The requirements for DSTM with DHCPv6 are:

• Nodes are dual stack and implement the DSTM and DHCPv6 client.
• A DSTM server acting as a DHCPv6 server is available on the IPv6 network.
• The DHCPv6 server implements the added functionality needed for DSTM.
• DHCPv6 relay forwarding is enabled on the IPv6 network.
• The border router to the IPv4 network is DSTM enabled.
• The DSTM server can configure the DSTM border router remotely.
• A sufficiently large IPv4 address pool is available on the DSTM server to serve all

concurrent IPv4 clients.

17.1.3.2 Limitations

DSTM only provides IPv4 in an IPv6 network. If the node is mobile and moving to an
IPv4-only network, DSTM does not enable IPv6 connectivity.

17.1.3.3 Applicability

The other way to provide IPv4 and IPv6 connectivity is to deploy a full dual-stack network,
where all routers are forwarding and routing IPv4 and IPv6. DSTM is useful when such
an environment is not possible, either because of the lack of IPv4 address space and the
need not to use NAT, or by the very dominance of IPv6 deployment over the legacy IPv4
applications.

17.1.4 TSP Tunnel Broker

The TSP tunnel broker [Blanchet and Parent, 2005] establishes IPv6 in IPv4 tunnels, with or
without the presence of NATs in the path, as discussed in Section 16.2.9. It also supports IPv4
in IPv6 tunnels, by specifying the ‘v4v6’ encapsulation mode in the TSP XML negotiation.
The TSP tunnel broker architecture in IPv6 dominant networks is shown in Figure 17.5.
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IPv4TSP

IPv4 in IPv6

TB

R1

Figure 17.5 IPv4 in IPv6 tunnels with TSP
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If the TSP client is on an IPv6-only network, it contacts the tunnel broker at its IPv6
address and requests an IPv4 in IPv6 tunnel. In the tunnel request, the client sends its IPv6
address and the ‘v4v6’ tunnel encapsulation mode, as shown below.

<tunnel action="create" type="v4v6">
<client>

<address type="ipv6">3ffe:b00:1:1::1</address>
</client>

</tunnel>

The broker responds with the IPv4 in IPv6 tunnel information.

<tunnel action="info" type="v4v6" lifetime="1440">
<server>

<address type="ipv4">192.0.2.1</address>
<address type="ipv6"> 3ffe:b00:1:1::2</address>

</server>
<client>

<address type="ipv4">192.0.2.2</address>
<address type="ipv6"> 3ffe:b00:1:1::1</address>

</client>
</tunnel>

The client and the tunnel server configures their IPv4 in IPv6 tunnel endpoints and then
IPv4 traffic is encapsulated in IPv6 from the client to the tunnel server.

DSTM and TSP tunnel broker can be used together [Bound, 2003] where the DSTM
server is the TSP tunnel broker.

17.1.4.1 Requirements

The requirements to deploy the TSP tunnel broker solution are:

• The node is dual-stack.
• The node implements the TSP protocol and supports configured tunnels.
• The TSP tunnel broker implements the TSP protocol.
• The TSP tunnel broker has access to a tunnel server.
• The tunnel server is dual-stack, supports configured tunnels and is connected to the IPv4

network. A tunnel server may be implemented within the tunnel broker.
• Hosts behind a TSP router client do not need to support or know about TSP and may only

be IPv4 enabled.

17.1.4.2 Limitations

In IPv4 in IPv6 tunnel mode, the TSP tunnel broker shares the same limitations as the IPv6
in IPv4 tunnels, described in Section 16.2.9.
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17.1.4.3 Applicability

The TSP tunnel broker can be used as an IPv4 in IPv6 VPN server or mobility server, where
it provides ubiquitous IP to dual stack nodes in any context: IPv4, IPv4 behind NAT and
IPv6 networks.

17.2 IP Packet and Transport Translation

Some deployment scenarios involve IPv6-only nodes. For example, new networks with
new applications might require IPv6-only functionalities, prohibiting the use of IPv4. The
simplicity of running only one IP protocol might drive some networks to be IPv6-only.
Legacy IPv4 nodes would never be upgraded to IPv6, not necessarily for technical reasons.
For example, a good printer will continue to print while the vendor might decide not to
provide a new version of the IP driver to support IPv6. Together, we have IPv6-only nodes
and IPv4-only nodes. If these two kinds of nodes need to interact with each other, some
translation at the IP packet layer is necessary. This generic situation is shown in Figure 17.6.

When one node is querying the IP address corresponding to the name of the other node, the
querier will never get a response. For example, the IPv6 node is querying the IPv6 address
of the IPv4 node, which it does not have. The IPv4 node is querying the IPv4 address of
the IPv6 node, which it does not have. The translation process should intercept the DNS
query packets, convert them to the other IP address format and then send the modified query
packet. When the DNS reply arrives, it should be reconverted. The translation process must
allocate temporary addresses to the nodes for the query to work. The IPv6 node is querying
the AAAA record for the other node. The translator changes that query to an A record and
sends it. The reply is received by the translator and reconverts it to an AAAA record answer.
By reconverting, it must allocate a temporary IPv6 address for the IPv4 node. An obvious
limitation here is that the translator must be placed between the two nodes in all cases, since
it needs to intercept all DNS queries. However, if one node is trying to reach the other node
using its IP address, then no DNS request is sent, which means no connection.

In summary, translation involves translating IP headers of packets, and intercepting and
translating the DNS queries.

The translation can be done at the IP layer, at the transport layer or at the application layer.
Some proposals such as the Network Address Translation-Protocol Translation (NAT-PT)
and Transport Relay Translator (TRT) have been defined but are deprecated or have limited
use. They are described in the book Web site (http://www.ipv6book.ca).
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Figure 17.6 IPv6-only and IPv4-only nodes
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17.3 Configuring IPv4 in IPv6 Dominant Networks

This section describes the configuration of static IPv4 in IPv6 tunnels and the TSP tunnel
broker for the various implementations.

17.3.1 FreeBSD

FreeBSD supports static tunnels through the ‘gif’ interface and the TSP tunnel broker client
through the tsp/freenet6 client.

17.3.1.1 Static IPv4 in IPv6 Tunnels

IPv4 in IPv6 tunnels in FreeBSD are implemented as gif interfaces. These interfaces can
also be used for IPv6 in IPv4 (as described in Section 16.5.2), IPv4 in IPv4 and IPv6 in IPv6
encapsulations. They are clonable devices using the create argument of the ifconfig
command. The tunnel argument specifies the IPv6 outer source and destination addresses.
The IPv4 inner addresses are defined by the inet argument.

The following commands configure an IPv4 in IPv6 static tunnel.

# ifconfig gif0 create
# ifconfig gif0 tunnel 3ffe:b00:1:1::1 3ffe:b00:1:1::2 inet
192.0.2.1 192.0.3.1 alias up

To store this configuration, use the ipv6_ifconfig_gif0 variable in the
/etc/rc.conf file.

To forward all IPv4 traffic through this static tunnel, use the route add default
command, as shown below.

# route add default 192.0.3.1

17.3.1.2 TSP Tunnel Broker Client

The TSP tunnel broker client is available on FreeBSD in the ports/net/freenet6, or from the
freenet6 Web site (http://www.freenet6.net) or from Hexago directly.

The TSP tunnel broker client on FreeBSD uses the ‘gif’ interface for the IPv4 in IPv6
tunnels. The ‘tspc.conf’ file, used to configure the client, is discussed in Section 16.5.7.2
and specifics on IPv4 in IPv6 tunnels are discussed in Section 17.3.4.2. In the ‘tspc.conf’
file, the variable-value pairs in Table 17.1 (taken from Table 16.20) are specific to FreeBSD.

Table 17.1 TSP Tunnel Broker Client Configuration for FreeBSD

Variable Value Description

template freebsd Script template file
if_tunnel_v4v6 gif0 Interface name for IPv4 in IPv6 tunnels
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The TSP client is run in the command line as ‘tspc’. Its configuration file is usually
placed in ‘/usr/local/etc/tspc.conf’.

For additional information on the TSP tunnel broker client, see Sections 16.5.7.2 and
17.3.4.2.

17.3.2 Solaris

Solaris supports static tunnels through the ‘ip6.tun’ interface and TSP tunnel broker
through the tsp/freenet6 client.

17.3.2.1 Static IPv4 in IPv6 tunnels

Static IPv4 in IPv6 tunnels are configured using the ‘ifconfig’ command with the ‘tsrc’,
‘tdst’. The parameters are put in the ‘/etc/hostname6.ip6.tun0’ file to save the
tunnel configuration permanently. The files ‘/etc/hostname6.ip6.tun1’, tun2, etc.,
are used for additional tunnels. The ‘tsrc’ and ‘tdst’ are the tunnel source and destination
address of the outer packet (i.e. IPv6 for an IPv4 in IPv6 tunnel). The ‘up’ parameter makes
the interface live. Static IPv4 addresses are assigned to the tunnel endpoints.

The following file configures an IPv4 in IPv6 static tunnel.

# cat /etc/hostname6.ip6.tun0
tsrc 3ffe:b00:1:1::1 tdst 3ffe:b00:1:1::2
192.0.2.1 192.0.3.1 up

The ‘ifconfig ip6.tun0’ is used to look at the tunnel interface configuration.

# ifconfig ip6.tun0

17.3.2.2 TSP Tunnel Broker Client

The TSP tunnel broker client is available on Solaris from the freenet6 Web site
(http://www.freenet6.net) or from Hexago directly.

The TSP tunnel broker client on Solaris uses the ‘ip6.tun’ interface for the IPv4 in IPv6
tunnels. The ‘tspc.conf’ file, used to configure the client, is discussed in Section 16.5.7.2
and specifics on IPv4 in IPv6 tunnels are discussed in Section 17.3.4.2. In the ‘tspc.conf’
file, the variable-value pairs, in Table 17.2 (taken from Table 16.20) are specific to Solaris.

The TSP client is run in the command line as ‘tspc’.

Table 17.2 TSP Tunnel Broker Client Configuration for FreeBSD

Variable Value Description

template solaris Script template file
tunnel_mode v4v6 IPv4 in IPv6 tunnels
if_tunnel_v4v6 ip6.tun0 Interface name for IPv4 in IPv6 tunnels
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For additional information on the TSP tunnel broker client, see Sections 16.5.7.2 and
17.3.4.2.

17.3.3 Cisco

Cisco IOS tunnel interfaces are defined using the ‘interface tunnel’ statement. Each
type of tunnel is defined with the ‘tunnel mode’ statement. The static IPv4 in IPv6 tunnel
has the ‘ipipv6’ mode.

17.3.3.1 Static IPv4 in IPv6 tunnels

Cisco IOS implements IPv4 in IPv6 tunnels using the ‘interface tunnel’ statement
under which the ‘tunnel mode’ is set to ‘ipipv6’.

The inner source IPv4 address is defined by the ‘ip address’ statement and the outer
IPv6 source and destination addresses are defined by the ‘tunnel source’ and ‘tunnel
destination’ statements respectively.

The following statements configure an IPv4 in IPv6 static tunnel.

configure terminal
interface tunnel 0
ip address 192.0.2.1 255.255.255.255
tunnel source 3ffe:b00:1:1::1
tunnel destination 3ffe:b00:1:1::2
tunnel mode ipipv6

17.3.4 Hexago

The Migration Broker is a TSP tunnel broker implementation. Configuring HexOS is
discussed in Section 16.5.7. This section describes only the changes for IPv4 in IPv6
tunnels.

17.3.4.1 Static IPv4 in IPv6 tunnels

Static tunnels are configured using the ‘tunnel’ interface, where IPv4 addresses are defined
by the ‘ip address’ statement and IPv6 addresses are defined by the ‘tunnel source’
and ‘tunnel destination’ statements.

The following statements configure an IPv4 in IPv6 static tunnel.

configure terminal
interface tunnel 0
ip address 192.0.2.1
tunnel source 3ffe:b00:1:1::1
tunnel destination 3ffe:b00:1:1::2

Since the tunnel broker automates the establishment of static tunnels through the use of
the TSP protocol, static tunnels on the broker are mostly used between distant brokers and
routers.
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17.3.4.2 TSP Tunnel Broker Client

The TSP tunnel broker client is described in Section 16.5.7.2. The only change from the
IPv6 in IPv4 tunnels is to set the ‘tunnel_mode’ variable to ‘v4v6’ in the tspc.conf
file, as shown in Table 17.3.

17.3.4.3 TSP Tunnel Broker

The TSP tunnel broker is described in Section 16.5.7.3. The changes in the configuration
are listed in Table 17.4.

17.3.5 Juniper

JunOS supports static IPv4 in IPv6 tunnels through the ‘ip’ interface.

17.3.5.1 Static IPv4 in IPv6 tunnels

On Juniper platforms, tunnels are supported with the Tunnel PIC. The IP-in-IP tunnels are
configured with the ‘ip’ interface.

The following statements configure an IPv4 in IPv6 static tunnel. Note that the IPv4
address of the remote tunnel endpoint is not specified.

Table 17.3 TSP Tunnel Broker Client Configuration
for IPv4 in IPv6 tunnels

Variable Value Description

tunnel_mode v4v6 IPv4 in IPv6 tunnels

Table 17.4 TSP Tunnel Broker Changes for IPv4 in IPv6 tunnels

IPv6 in IPv4 IPv4 in IPv6 Description

ipv6 local pool ip local pool Pools of addresses used for assignements of tunnel
endpoints.

tunnel server Under tunnel server mode.
ip address ipv6 address The tunnel server endpoint is an IPv6 address

specified by ipv6 address.
ipv6 pool endpoints ip pool endpoints The tunnel server pool is an IPv4 address pool

specified by ip pool endpoints.

tsp Under the TSP mode.
ip address ipv6 address The TSP listener address is an IPv6 address specified

by ipv6 address.
tunnel mode v6v4 tunnel mode v4v6 The TSP listener offers the IPv4 in IPv6 tunnels.
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interfaces {
ip-0/0/1 {

unit 0 {
tunnel {

source 3ffe:b00:1:1::1;
destination 3ffe:b00:1:1::2;

}
family inet {

address 192.0.2.1/31;
}

}
}

}

17.4 Summary

This chapter describes techniques used when an IPv6 dominant network is deployed and
IPv4 support is required. Techniques such as DSTM and TSP Tunnel Broker involve the use
of IPv4 in IPv6 tunneling.

17.5 References
Blanchet, M. amd F. Parent, ‘IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP)’, draft-blanchet-v6ops-

tunnelbroker-tsp-03 (work in progress), August 2005.
Bound, J., ‘Dual Stack Transition Mechanism’, draft-bound-dstm-exp-00 (work in progress), August 2003.





18
Migrating with Application Level
Gateways

Chapters 16 and 17 describe transition mechanisms applied at the IP level, which makes
them independent of the applications. When a limited number of applications need to be
migrated, application level gateways (ALG) that receive and decode the application protocol
connections over one IP protocol and then restart another connection over the other IP
protocol, can be considered and are described in this chapter.

18.1 Application Level Gateway

Store and forward applications are good candidates for application level gateways. For example,
an SMTP server can listen on one side on a TCP-IPv4 socket for incoming mail. When mail
arrives, it is stored locally and then submitted in the outgoing queue. The outgoing socket can
be on TCP-IPv6. Figure 18.1 shows an example in which host H1 uses IPv6 to its SMTP server.

Dest1

H1

SMTP/POP/IMAP
IPv6

IPv6

Application
gateway

IPv4

SMTP
IPv4

Dest2

Figure 18.1 SMTP application level gateway
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H1

HTTP
IPv6

HTTP
IPv4

IPv6

HTTP
proxy

HTTP
server

IPv4

Figure 18.2 HTTP application specific proxy

Dest1 and Dest2 hosts are on IPv6 and IPv4 respectively. The SMTP server stores the
incoming and outgoing mail temporarily. Since this architecture is already used in mail
deployments, it is easy to upgrade it for IPv6.

18.2 Application Specific Proxy

Applications that can be easily proxied such as HTTP are good candidates for application
specific proxies. For example, an HTTP proxy listening on the IPv6 side for HTTP requests
can proxy the requests on the IPv4 side to the HTTP server. Figure 18.2 shows an example
of this architecture.

If a site is already using an HTTP proxy for IPv4, this architecture for IPv6 transition is
easy to deploy.

18.3 Considerations of Application Level Gateways

The ALGs described in the previous sections share the same limitations:

• Scalability: depending on the application protocol, having all enterprise traffic going to a
single server requires processing power and bandwidth.

• Reliability: ALGs are a single point of failures.
• Limited number of applications: not all applications are defined to work with a proxy.
• Security: A security association cannot be easily established between the end node and

the server because the ALG is intercepting the trafic.

For all these reasons, very few applications are targeted to be deployed with ALGs. The
application that fits well in this model is mail with SMTP, POP and IMAP protocols.

18.4 Summary

Application-level gateways are used for migration applications that are designed to be
proxied. However, in all cases, important limitations of these architectures decrease their
usefulness in deployments, with the exception of mail.
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Transport Protocols

IPv6 is a new design of layer 3 of the Internet protocol suite. A requirement of the design is
to reuse the current transport protocols (layer 4) as they stand, including the Transmission
Control Protocol (TCP) and the User Datagram Protocol (UDP). Recent work on other
transport protocols such as the Stream Control Transmission Protocol (SCTP) [RFC2960] is
not discussed.

19.1 Checksum

As discussed in Section 3.7.1, the IP packet checksum is removed from the IPv6 header under
the assumption that the transport protocol above IP must have a checksum. This transport
protocol checksum is calculated over the following fields [RFC2460]:

• Source address;
• Destination address;
• Next Header field;
• Transport-layer payload length.

Figure 19.1 illustrates the pseudo-header used to calculate the checksum.
The Next Header field contains the identifier of the transport protocol. If extension headers

are present in the IP header as described in Section 3.5, then the Next Header field is
taken from the last extension header in the chain. The address fields contain the source and
destination addresses. If a routing header is used when the destination address is not the
final destination, as described in Section 9.2, the checksum is still computed over the final
destination address.

All transport protocols, such as TCP, UDP and ICMP, compute the checksum for IPv6
packets. For IPv4, UDP checksum is optional and TCP checksum is mandatory.
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Source address

Destination address

Transport payload pength

0 Next header

32 bits

Figure 19.1 Transport checksum

19.2 Transmission Control Protocol (TCP)

TCP has not changed for IPv6. However, parallel to the engineering of IPv6, TCP has
evolved with optimizations based on years of research, such as Selective acknowledgment
(SACK)[RFC2018] and Explicit Congestion Notification (ECN) [RFC3168]. Some of these
optimizations are useful for wired and wireless networks. The latter creates additional con-
straints and requirements which are discussed in Chapter 12.

TCP design is based on the following assumptions:

• packet loss is due to network congestion;
• all hosts are participating to equally share the bandwidth;
• the network is a black-box: transport congestion control is done by the end systems.

This section discusses ECN since it modifies the definition of the IPv6 header.

19.2.1 Explicit Congestion Notification (ECN)

Active queue management mechanisms such as Random Early Detection (RED) [Floyd and
Jacobson, 1993] enable the router to detect congestion before its queue overflows, causing
all subsequent packets to be dropped. ECN is a way for routers to signal congestion, based
on their early detection, to the end nodes before the router starts dropping packets. End
nodes supporting ECN decrease their transport window size to participate in the reduction
of traffic, thus avoiding the congestion, and consequently avoiding the packet drops.



Transport Protocols 361

DSCP ECN

Figure 19.2 ECN bits in the Traffic class field of the IPv6 header

The signaling is done by bits in both the IP header and the TCP header. The two ECN
bits in the IP header are in the traffic class field, as shown in Figure 19.2.

The ECN bit values are defined in Table 19.1. An ECN-capable node puts ‘10’ in the ECN
bits of the traffic class field of the IPv6 header when it sends packets. A non-ECN-capable
node puts ‘00’. A router detecting early congestion within its active queue modifies the IPv6
header by setting the ECN bits to ‘11’ if the ECN bits were set to ‘10’ by the sending node.

ECN bits are also defined in the TCP header: the ECN-echo bit (ECE) and the Congestion
Window Reduced (CWR) bit, as shown in Figure 19.3.

The ECE bit is used by a node to publish its support of the ECN mechanism to the other
node. The CWR bit is used by a node to acknowledge the reception of the congestion signal.

Figure 19.4 shows an example of an IPv6 network with ECN-capable nodes N1 and N2
and ECN-capable router R1 in the IPv6 network. N1 to N2 traffic goes through R1.

Figure 19.5 shows the ECN relevent exchanges between ECN-capable nodes. When N1
and N2 establish their TCP connection, N1 publishes its support of ECN to the other party
(step 1) by setting the ECE bit in the TCP header. N2 acknowledges to N1 its own support
of ECN (step 2) by setting the ECE bit. Then traffic flows freely between the two nodes, all
packets being marked with the ECN capability bits (‘10’) in the IP header. When the early
congestion is detected by the ECN-capable router R1, R1 modifies the queued packet for N2
by changing the ECN IP bits to ‘11’, indicating early congestion, and forwards it to N2.
N2 then signals back to N1 with the ECE TCP bit in the next ACK TCP packet. N1 receiving
this ECE TCP bit acts as if congestion happened by decreasing its TCP window size.

Table 19.1 ECN values in the Traffic class field

Value Description

00 No ECN capability
10 ECN capable node
01 ECN capable node47

11 Router signaling congestion to ECN capable nodes

Note: 10 and 01 are equivalent; typically, ‘10’ is used. See
RFC3168 for discussion on the use of these bits.
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Figure 19.3 TCP header ECN bits
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Figure 19.4 ECN network example
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Figure 19.5 ECN process

N1 acknowledges to N2 the reception of the congestion signal by setting the TCP CWR bit.
Thereafter, the normal TCP congestion mechanism applies.

This ECN mechanism is in fact a way for routers that anticipate congestion to signal traffic
slow down to ECN-capable nodes in order to avoid the congestion. However, the real effect of
ECN will only be seen when enough nodes and routers are ECN-capable. ECN-capable nodes
mean modifications to the IP and TCP stacks and ECN-capable routers mean modifications to
the forwarding engine. Note that the ECN mechanism is defined for both IPv4 and IPv6.

19.3 User Datagram Protocol (UDP)

No modification is made to UDP for IPv6, except the mandatory checksum computed over
the pseudo-header, as shown in Figure 19.1.
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19.4 Internet Control Message Protocol (ICMP)

ICMP is not a transport protocol like UDP or TCP: it does not transport application data and
protocols. But from the perspective of the IPv6 header, ICMP has a checksum computed
over the pseudo-header just as TCP and UDP compute checksums. ICMP, as a layer above
IPv6, isolates the implementation from being bound to the layer 2 as in IPv4 ICMP. ICMP
is detailed in Chapter 7.

19.5 Summary

The transport protocols are not changed from IPv4 to IPv6. However, transport checksums
are now mandatory. Over the years, TCP has been enhanced by many optimizations, such as
ECN. ECN is a mechanism for routers to signal the early detection of congestion to nodes
by modifying the ECN bits in the traffic class field of the IPv6 header.
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20
Network Management

Network management is carried out using various tools and protocols. The most used is the
Simple Network Management Protocol (SNMP). SNMP is a protocol between agents located
inside managed nodes and management stations, to query and set network management
variables, as shown in Figure 20.1.

Considerations on changes to support IPv6 for SNMP transport and the MIBs are described.

20.1 SNMP Transport

SNMP uses UDP over IPv4 for transport [RFC3417]. Transport mappings have been rede-
fined[RFC3419] for IPv4 and IPv6 as well as additional transport protocols to UDP, such as
TCP and SCTP. The transport is now specified with a set of variables, as shown in Table 20.1.

SNMP management station

SNMP agent

SNMP agent

SNMP

SNMP

Figure 20.1 SNMP basic architecture
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Table 20.1 IP version independent SNMP transport mapping variables

Object name Some possible values Description

TransportDomain transportDomainUdpIpv4,
transportDomainUdpIpv6,
transportDomainTcpIpv6

Transport domain is the
combination of the transport
protocol (UDP, TCP, SCTP)
and the IP protocol used for
SNMP transport.

TransportAddressType udpIpv4, udpIpv6,
tcpIpv6

The type of transport
address used in the
TransportAddress
variable.

TransportAddress IPv6 address with transport port The transport address itself,
containing both the IP
address and the transport port
number.

As with DNS, the transport protocol is not related to the information queried. For example,
a management station can use SNMP over IPv4 to query IPv6 variables.

20.2 Management Information Base (MIB)

SNMP uses the Management Information Base (MIB) to structure the data that can be
managed in network devices. MIB schemas [RFC2578] were based on IPv4 addresses,
specifying an IPv4 address field with type ‘IpAddress’. Table 20.2 shows an IP forwarding
variable ‘ipCidrRouteDest’ used to identify a destination route and defined as an IPv4
address.

All address-related MIB variables are now IP version independent [RFC4001]. For any
address field, two variables are used: the first is used to define the type of the address
(‘InetAddressType’) used in the second variable, defined as ‘InetAddress’, a generic
type holding both kind of addresses. Table 20.3 shows the same IP forwarding variable
shown in Table 20.2 converted to the IP version independent method. New variable names
were defined in order not to break the current schema, with the ‘ip’ prefix being changed
to ‘inet’.

This work on IP version independent MIBs [RFC4001] is fairly recent and at the time
of writing implementations are not easily available. Many current implementations either
support the IPv6 specific variables [RFC2465] or have enterprise specific MIBs, and use
UDP IPv4 as transport.

Table 20.2 Example of IPv4 MIB variable

Object name Object type

ipCidrRouteDest IpAddress
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Table 20.3 Example of IP version independent MIB variable

Object name Object type

inetCidrRouteDestType InetAddressType
inetCidrRouteDest InetAddress

20.3 Other Management Tools

Discussions in IETF and products on the market are starting to replace SNMP with an
XML-based framework [Enns, 2004].

20.4 Authentication, Authorization and Accounting using RADIUS

Authentication, authorization and accounting (AAA) are security services used in enterprise
and provider networks. Figure 20.2 shows an example of a network access server NAS1 with
modems receiving a call from node N1 to reach node N2 on the IPv6 network. N1 and NAS1
use the Point-to-Point Protocol (PPP) to negotiate the parameters of the connection and then
establish a data channel to carry IPv6 traffic over the PPP connection (see Section 6.7 for
details of IPv6 and PPP).

During the PPP negotiation phase, N1 sends its credentials, such as username and pass-
word, to NAS1, which in turn is configured to use an AAA server S1. S1 receives the
authentication data and compares them with the database. The database may contain addi-
tional information for these credentials, such as the IP address of N1. The AAA protocol used
between NAS1 and S1 is the Remote Authentication Dial In User Service (RADIUS) protocol
[RFC2865]. Other protocols are used for the same purpose, such as Lightweight Direc-
tory Access Protocol (LDAP) [RFC2251], TACACS [RFC1492] and DIAMETER[Calhoun,
2003], but are not covered here.

Radius is enhanced [RFC3162] to support IPv6 as a transport for Radius packets, and as
a supported IP protocol in its dictionary. This enables an NAS to request or receive an IPv6
address from the Radius server for the connecting node.

N1
PPP control

IPv6 in PPP

NAS1

IPv6

RADIUS

S1

db

N2

Figure 20.2 Network access server with Radius
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20.5 Configuring SNMP on Hosts and Routers

SNMP configurations are shown for Cisco, Hexago and Juniper.

20.5.1 Cisco

SNMP implementation on Cisco IOS supports:

• IPv6 MIB;
• agents for IPv6.

The example below shows a basic SNMP configuration of R1 where a SNMP management
station (3ffe:b00:0:4::b) can make queries to the router and will receive traps.

configure terminal
snmp-server community public
snmp-server enable traps
snmp-server host 3ffe:b00:0:4::b

Cisco has defined an enterprise MIB for IPv6.

20.5.2 Hexago

SNMP implementation on HexOS supports:

• IPv6 MIB for tunnels;
• agents for IPv6.

The example below shows a basic SNMP configuration of R1 where a SNMP management
station (192.0.2.1) can make queries to the router and will receive traps.

configure terminal
snmp-server community public
snmp-server enable traps
nmp-server host 192.0.2.1

HexOS shows IPv6 in IPv4 tunnel interfaces through the standard MIB definitions.

20.5.3 Juniper

SNMP implementation on JunOS supports:

• the transport of SNMP over IPv6;
• IPv6 MIB;
• agents for IPv6.
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The example below shows a basic SNMP configuration of R1 where a SNMP management
station (3ffe:b00:0:4::b) can make queries to the router and will receive traps.

snmp {
community PUBLIC {
clients {

3ffe:b00:0:4::b/128;
}

}
trap-group GR1 {
targets {
3ffe:b00:0:4::b;

}
}

}

Juniper has also defined an enterprise MIB [JUNIPERMIB] for IPv6 to extend the
ifTable for IPv6 support.

20.6 Summary

SNMP is the protocol used to manage network devices through a management station. While
it uses UDP over IPv4 as transport, it can now be transported over IPv6. The MIBs have
evolved from IPv4-only to IP version independent.
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Porting Applications

This chapter presents the changes to the C Language Application Programming Interface
(API) for applications to support IPv6. The intended audience is programmers who need to
know the required changes to make an application IPv6 ready. This chapter does not discuss
the Unix sockets, the advanced API used for controlling raw IP packets and multicast. For
the interested reader, excellent references [Hagino, 2004; Stevens et al., 2004] are provided
at the end of the chapter.

This chapter describes the key considerations when porting an application to IPv6, then
details the new data structures and functions. Best practices are listed and an example of
porting a small IPv4 client and server to IPv6 is described. This chapter uses FreeBSD as
the platform, but the examples should be highly portable, as indeed is the API.

21.1 Introduction

Applications using IPv4 network sockets need to be converted to IPv6. The conversion can
be very simple when the network programming code is in a single location and does not
do complex networking, or can be very challenging for kernel and complex networking
applications. The well-known socket API, defined initially in BSD Unix, is a defacto standard.
With IPv6, the new socket API, derived from the BSD one, is an IETF and IEEE standard,
making it much more portable and easy for programmers.

The new socket API adds new structures and new functions and does not change IPv4
structures and functions. An operating system providing the old and the new API will not
break any application linked with the old API.

21.2 Considerations

From a programmer’s point of view, the important structural changes are described in this
section.

Migrating to IPv6: A Practical Guide to Implementing IPv6 in Mobile and Fixed Networks Marc Blanchet
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21.2.1 IP Protocol Version Independence

Before starting to make the porting effort, the programmer has to make a decision on whether
the program will be IPv4-only, separated IPv4 and IPv6, or IP protocol version independent.
The latter is recommended for most cases. IP protocol version independence is where the
code is agnostic to which IP protocol the connections will use. In some cases, programmers
might want to do specific tasks for one IP protocol as against the other. The IP protocol
version independent code, discussed in this chapter, makes the code agnostic to the IP
protocol version, which in the end makes the design simpler.

21.2.2 Multiple Addresses

An IPv6-enabled stack handles multiple IP addresses on a single interface. A typical example
might be one IPv4 address, one global IPv6 address and one link-local IPv6 address. For both
clients and servers, the code must take into account the multiple addresses. For example,
when querying the DNS for the server addresses, the client code should loop through all the
received IP addresses until one is answering.

21.2.3 Scoped Addresses

IPv6 addresses are scoped as described in Section 4.3.2. A fully specified address must
include its scope and its usage in this scope. For example, a link-local address is limited
to the link; however, a link-local address is ambiguous given that it could apply to any
interface on the host. A link-local address must be tagged as link-local and be bound to a
specific interface when it is used for a connection. A program must carry a data structure for
addresses where the IP address itself, the scope and the interface are identified. Moreover,
the text representations of IPv6 addresses with scope and interface have a special syntax.
Conversion routines between binary and text representations are included in the API.

21.2.4 Address Memory Space

IPv4 addresses are 32 bits long, making them easy to store in int variables. IPv6 addresses
are 128 bits long and require additional information, such as their scope (link, site, etc). IPv6
addresses can only be handled properly using a struct. The new structs are defined to hold
either IPv4 and IPv6 addresses in a combined and transparent way.

21.2.5 URL and Text Representation of IP Addresses

As discussed in Section 4.2.3, the usual URL includes a ‘:’ to separate the IPv4 address
and the port number. A new URL syntax is defined [RFC3986] for IPv6 addresses where
brackets ‘[]’ are used to enclose them. A program parsing IP addresses with port numbers
should be modified to handle the new URL syntax.
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21.3 Structures

This section describes the most used structures defined in the new API.

21.3.1 Struct addrinfo

The addrinfo structure is a replacement of the hostent structure. It holds connection
information used in handling name to IP address resolution, where the DNS query for IP
address returns multiple IP addresses. It includes a linked list of addresses and the type of
socket. It is defined in /usr/include/netdb.h. Struct addrinfo is used by the
getaddrinfo() function.

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
size_t ai_addrlen;
char *ai_canonname;
struct sockaddr *ai_addr;
struct addrinfo *ai_next;

};

Table 21.1 lists the elements with the possible values and a description.

Table 21.1 Struct addrinfo values

Element Possible values Comment

AI_PASSIVE Get address to use bind().
AI_CANONNAME Fill ai_canonname.
AI_NUMERICHOST Prevent name resolution on that address.
AI_ALL IPv6 and IPv4-mapped.

ai_flags AI_V4MAPPED_CFG Accept IPv4-mapped if kernel supports.
AI_ADDRCONFIG Only if any address is assigned.
AI_V4MAPPED Accept IPv4-mapped IPv6 address.
AI_DEFAULT AI_V4MAPPED_CFG � AI_ADDRCONFIG (special

recommended flags for getipnodebyname).
ai_family AF_INET IPv4 address family.

AF_INET6 IPv6 address family.
ai_socktype SOCK_STREAM TCP transport.

SOCK_DGRAM UDP transport.
SOCK_SEQPACKET SCTP transport.

ai_protocol IPPROTO_IPV4 IPv4 protocol.
IPPROTO_IPV6 IPv6 protocol.

ai_addrlen Length of struct pointed by ai_addr.
ai_canonname Hostname string.
ai_addr IP Address itself.
ai_next Pointer to next structure in the linked list of addresses.
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An IPv4-mapped address is a way to insert an IPv4 address in an IPv6 address format.
This was defined so programmers would only care about IPv6 addresses, even when they
were using IPv4. However, this feature raised some security concerns [Metz and Hagino,
2003; Hagino, 2004].

21.3.2 Struct sockaddr_in6

The sockaddr_in6 structure is the IPv6 version of sockaddr_in. As shown below,
it holds the IP address, port number of a connection, IPv6 flow label and scope of the
address.

struct sockaddr_in6 {
uint8_t sin6_len;
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr;
uint32_t sin6_scope_id;

};

Table 21.2 lists the elements with the possible values and a description.
The sockaddr_in6 structure is used in socket calls as place holder for IPv6 addresses.

However, sockaddr_in6 is specific to IPv6 and, as such, is not IP protocol version
independent and should be avoided.

21.3.3 Struct sockaddr_storage

The sockaddr_storage is a struct defined for casting either sockaddr_in or
sockaddr_in6. This struct should be used when making a program IP protocol version
independent.

21.3.4 Definitions

Some definitions were converted from IPv4 to IPv6. Table 21.3 lists those used most often.
These definitions are used in bind function calls.

Table 21.2 Struct sockaddr_in6 values

Element Possible values Comment

sin6_len Length of the struct itself. This field is not present on all
platforms.

sin6_family AF_INET6 IP address family.
sin6_port Transport port number.
sin6_flowinfo IPv6 header flow information (see Section 3.4.3).
sin6_addr IPv6 address itself.
sin6_scope_id The scope of the IPv6 address (e.g.: link-local, site, etc.).
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Table 21.3 Definitions

IPv4 IPv6 Comment

INADDR_ANY in6addr_any The wildcard address used by servers to bind
on all addresses.

INADDR_LOOPBACK in6addr_loopback The loopback address used to specify the local
host using internal connections not going on
the wire.

21.4 Functions

This section describes the most used functions defined in the new API.

21.4.1 Getaddrinfo

The getaddrinfo function is the replacement of gethostbyname. It queries the DNS
for the IP addresses of a hostname. The result is a linked list of addresses provided by the
res pointer. This list should be traversed by the calling program.

int getaddrinfo(
const char *nodename,
const char *servname,
const struct addrinfo *hints,
struct addrinfo **res

);

Table 21.4 lists the arguments of getaddrinfo.

21.4.2 Getnameinfo

The getnameinfo function is a replacement of the gethostbyaddr, inet_addr and
inet_ntoa functions. It queries the DNS for the hostname of an IP address. The result is
the hostname string in the node element.

int getnameinfo(
const struct sockaddr *sa,
socklen_t salen,

Table 21.4 Getaddrinfo arguments

Argument Description

nodename The string of the hostname.
servname The string of the service name.
hints An addrinfo structure used to give requirements for the DNS resolution.
res The result of the DNS query as a linked list of IP addresses.
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Table 21.5 Getnameinfo arguments

Argument Description

sa The IP address of the socket.
salen The size of the sa struct.
node Pointer to a buffer. This will hold the hostname string on the return of the function.
nodelen The length of the node buffer.
service Pointer to a buffer. This will hold the service name string on the return of the

function.
servicelen The length of the service buffer.
flags Flags that influence the DNS resolution actions.

char *node,
socklen_t nodelen,
char *service,
socklen_t servicelen,
int flags

);

Table 21.5 lists the arguments of getnameinfo.
Getnameinfo is also used to convert IP addresses from binary to text and vice versa

by using specific flags in the call.

21.4.3 Macros

The following definitions are macros used to test IPv6 addresses. MC stands for multicast.

int IN6_IS_ADDR_UNSPECIFIED (const struct in6_addr *);
int IN6_IS_ADDR_LOOPBACK (const struct in6_addr *);
int IN6_IS_ADDR_MULTICAST (const struct in6_addr *);
int IN6_IS_ADDR_LINKLOCAL (const struct in6_addr *);
int IN6_IS_ADDR_SITELOCAL (const struct in6_addr *);
int IN6_IS_ADDR_V4MAPPED (const struct in6_addr *);
int IN6_IS_ADDR_V4COMPAT (const struct in6_addr *);

int IN6_IS_ADDR_MC_NODELOCAL (const struct in6_addr *);
int IN6_IS_ADDR_MC_LINKLOCAL (const struct in6_addr *);
int IN6_IS_ADDR_MC_SITELOCAL (const struct in6_addr *);
int IN6_IS_ADDR_MC_ORGLOCAL (const struct in6_addr *);
int IN6_IS_ADDR_MC_GLOBAL (const struct in6_addr *);

21.5 Change Table

Table 21.6 lists the most used structures, functions and definitions for IPv4 and the new
versions for IPv6.
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Table 21.6 API changes from IPv4 to IPv6

IPv4 IPv6 Section IP protocol version independence

hostent addrinfo 21.3.1 yes
sockaddr_in sockaddr_in6 21.3.2 no
sockaddr_in sockaddr_storage 21.3.3 yes
INADDR_ANY in6addr_any 21.3.4 no
INADDR_LOOPBACK in6addr_loopback 21.3.4 no
gethostbyname getaddrinfo 21.4.1 yes
gethostbyaddr getnameinfo 21.4.2 yes
inet_addr getnameinfo 21.4.2 yes
inet_ntoa getnameinfo 21.4.2 yes

21.6 Best Practice

The best practices in programming network applications are:

• make your code IP protocol version independent;
• use data structures to hold addresses;
• loop through all IP addresses.

21.7 Basic Example

This section describes the conversion of simple TCP client and server programs. For easy
reading, error handling is not provided. These programs were compiled and verified on
FreeBSD 5.2, however, they should work fine on most platforms.

The following code implements a TCP client over IPv4 to a server on port 2525. The
client prints the line of data received from the server and quits. It uses ‘localhost’ as the
destination host for simplicity. This code represents the networking code of a minimal IPv4
client application.

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

int main(void)
{
int sockfd;
struct hostent *he;
char buf[1000];
int numbytes;
struct sockaddr_in their_addr;

he = gethostbyname("localhost");
memset(&their_addr, 0, sizeof(their_addr));
their_addr.sin_family = AF_INET;
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their_addr.sin_port = htons(2525);
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
sockfd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(sockfd, (struct sockaddr *) &their_addr,
sizeof(their_addr));

numbytes = recv(sockfd,buf,sizeof(buf),0);
buf[numbytes] = ‘\0’;
printf("%s",buf);
close(sockfd);

}

The same client code is then converted to work as IP protocol independent. It implements
a loop going through the linked list of the IP addresses returned from getaddrinfo and
tries to connect until one is found answering on the required port.

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

int main(void)
{
int sockfd;
struct addrinfo hints,*res, *res0;
char buf[1000];
int numbytes;

memset(&hints,0,sizeof(struct addrinfo));
hints.ai_socktype = SOCK_STREAM;
getaddrinfo("localhost", "2525", &hints, &res0);
for (res = res0; res ; res = res->ai_next) {
sockfd = socket(res->ai_family, res->ai_socktype,

res->ai_protocol);
if (connect(sockfd, res->ai_addr, res->ai_addrlen)==0)

break;
}
numbytes = recv(sockfd,buf,sizeof(buf),0);
buf[numbytes] = ‘\0’;
printf("%s",buf);
close(sockfd);

}

The following code implements the TCP server over IPv4 on port 2525, serving the above
client. When receiving a new connection, the server prints ‘Hello, world!’ and quits. It binds
on all IPv4 addresses on the host.

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define HW_STR "Hello World!\n"
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int main(void)
{
int sockfd;
struct sockaddr_in my_addr;
struct sockaddr_in their_addr;
int sin_size;
int new_fd;

sockfd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(2525);
my_addr.sin_addr.s_addr = INADDR_ANY;
memset(&(my_addr.sin_zero), ‘\0’,8);
bind(sockfd, (struct sockaddr *) &my_addr,

sizeof(my_addr));
listen(sockfd,1);
sin_size = sizeof(their_addr);
new_fd = accept(sockfd, (struct sockaddr *) &their_addr,

&sin_size);
send(new_fd, HW_STR,sizeof(HW_STR),0);
close(new_fd);

}

When executing this server program, netstat shows the 2525 port opened on TCP over
IPv4 (tcp4).

# netstat —an
tcp4 0 0 *.2525 *.* LISTEN

This server code is converted to IPv6, as shown below. The socket calls, such as bind,
listen, accept and send are not changed.

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

int main(void)
{
int sockfd;
struct sockaddr_in6 my_addr;
struct sockaddr_in6 their_addr;
int sin_size;
int new_fd;

sockfd = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP);
memset(&my_addr, 0, sizeof(my_addr));
my_addr.sin6_family = AF_INET6;
my_addr.sin6_port = htons(2525);
my_addr.sin6_addr = in6addr_any;
bind(sockfd, (struct sockaddr *) &my_addr, sizeof(my_addr));
listen(sockfd,1);
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sin_size = sizeof(their_addr);
new_fd = accept(sockfd, (struct sockaddr *) &their_addr,
&sin_size);

send(new_fd, "Hello, world!\n",
sizeof("Hello, world!\n") 0);

close(new_fd);
}

When executing this program, netstat shows the 2525 port opened on TCP over IPv6
(tcp6).

# netstat -an
tcp6 0 0 *.2525 *.* LISTEN

As shown, this server only listens on IPv6. To have one single program listening on both
IPv4 and IPv6, the code should be IP protocol independent, by looping through all addresses
of the host and binding each address.

21.8 Summary

Porting an application to IPv6 is in most cases relatively straightforward. New data structures
and functions are provided to make the application IP protocol version independent, which
is the recommended method.

21.9 References
Hagino, J-I., IPv6 Network Programming, Elsevier, 2004.
Metz, C. and Hagino, J., ‘IPv4-Mapped Addresses on the Wire Considered Harmful’, draft-itojun-v6ops-v4mapped-

harmful-02 (work in progress), October 2003.
Stevens, W.R., Fenner, B., Rudoff, A.M., Unix Network Programming vol. 1, Addison-Wesley, 2004.
[RFC3986] Berners-Lee, T., Fielding, R. and L. Masinter, ‘Uniform Resource Identifier (URI): Generic Syntax’,

STD 66, RFC 3986, January 2005.

21.10 Further Reading
[RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J. and Stevens, W., ‘Basic Socket Interface Extensions

for IPv6’, RFC 3493, February 2003.
[RFC3542] Stevens, W., Thomas, M., Nordmark, E. and Jinmei, T., ‘Advanced Sockets Application Program

Interface (API) for IPv6’, RFC 3542, May 2003.



22
Configuration and Usage of
IPv6-enabled Open Source
Software

This chapter is targeted to the system and network administrators enabling IPv6 on their
systems. It discusses IPv6 support and configuration for Apache, Sendmail, Postfix, SSH,
XFree86, MRTG and Dovecot.

22.1 Apache Web Server

Setting up the Apache [Apache] Web server for IPv6 requires two basic steps. First, the
server has an IPv6 address and that address is registered in the DNS using AAAA records, as
described in Chapter 8. Second, the Web server is configured to listen on that IPv6 address.

In the httpd.conf configuration file of the Apache Web server, the Listen directive is
used to configure the address and port on which the Web server listens. The IPv6 address is
enclosed by brackets as with URL described in Section 4.2.3. For example, to listen on the
3ffe:b00:1:1::1 address, the Listen directive is:

# cat httpd.conf
Listen [3ffe:b00:1:1::1]

Similarly, virtual hosting is specified by the NameVirtualHost and VirtualHost
directives, which also use the bracket enclosing for IPv6 addresses, as shown below.
NameVirtualHost can only take one IP address per line. The following example is for
a Web server on both 192.0.2.1 and 3ffe:b00:1:1::1 addresses.
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# cat httpd.conf
NameVirtualHost 192.0.2.1
NameVirtualHost [3ffe:b00:1:1::1]

However, the corresponding VirtualHost directive must list all the named addresses
within the directive, as shown below for 192.0.2.1 and 3ffe:b00:1:1::1.

# cat httpd.conf
<VirtualHost 192.0.2.1 [3ffe:b00:1:1::1]>
</VirtualHost>

22.2 Sendmail

Sendmail [Sendmail] is enabled to listen to both IPv4 and IPv6 on all configured addresses by
defining two DAEMON_OPTIONS statements: one for IPv4 and one for IPv6 by setting the
Family variable to “inet6” in the DAEMON_OPTIONS m4 statement, as shown below.

DAEMON_OPTIONS(‘Name=IPv4, Family=inet’)dnl
DAEMON_OPTIONS(‘Name=IPv6, Family=inet6’)dnl

To enable sendmail to listen to a specific IPv6 address, specify the address with the Addr
variable, as shown below for 3ffe:b00:1:1::1.

DAEMON_OPTIONS(‘Name=IPv6, Family=inet6,
Addr=3ffe:b00:1:1::1’)dnl

In sendmail configuration files such as mailertable, access, and relay-domains,
IPv6 addresses are specified by prefixing them with the keyword IPv6 followed by a colon,
as shown below for 3ffe:b00:1:1::1. Note that no bracket is used.

IPV6:3ffe:b00:1:1::1

A technical white paper [HEXAGOSENDMAIL] describes the setup of IPv6 mail with
sendmail and bind.

22.3 Postfix

Postfix version 2.2 [Postfix] is the first version supporting IPv6. By default, IPv6 is not
enabled. To enable, set the inet_protocols variable to all in the main.cf configu-
ration file, as shown below.

# cat main.cf
inet_protocols=all

To specify the local interface address for outgoing SMTP connections, set the
smtp_bind_address6 to the IPv6 address, as shown below.
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# cat main.cf
smtp_bind_address6 = 3ffe:b00:1:1::1

IPv6 addresses in the mynetworks and debug_peer_list variables must be enclosed
in brackets, as shown below.

mynetworks = [3ffe:b00:1:1::]/64

22.4 SSH

By default [SSHDCONFIG], the SSH daemon listens to all configured IPv6 addresses. The
ListenAddress statement in the sshd configuration file (sshd_config) is used to
restrict to a specific IPv6 address, as shown below.

ListenAddress 3ffe:b00:1:1::1
ListenAddress [3ffe:b00:1:1::1]:2222

22.5 XFree86

XFree86 version 4.4 [XFREE86_4_4] is the first release to support IPv6. If IPv6 is configured
on the host, the X server will listen on IPv6 by default.

The DISPLAY environment variable is used to redirect the display of the applications to
a remote X server. The family name inet6 with a slash is used to restrict the transport to
IPv6, as shown below.

% setenv DISPLAY inet6/host1.example.org:0

The xhost command is used to control the remote access to the X server. The argument
of the xhost command is a hostname. If the hostname has IPv4 and IPv6 addresses in the
DNS, then all the returned addresses are added to the access control list. If only the IPv6
addresses are to be added, prefix the hostname with the IPv6 family name inet6 and a
colon, as shown below.

% xhost inet6:host1.example.org

22.6 MRTG

By default, MRTG [MRTG] does not use IPv6 as transport for SNMP. To enable IPv6
transport, the MRTG configuration file must contain the following statement.

EnableIPv6: Yes

The cfgmaker command can also be used to generate the MRTG configuration file. To
enable IPv6 transport, add the – enable-ipv6 argument to the cfgmaker command, as
shown below.

# cfgmaker –enable-ipv6
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22.7 Dovecot

Dovecot is an IMAP/POP server [DOVECOT]. To enable dovecot to listen on an IPv6
address, set the listen variable in the dovecot.conf configuration file to the IPv6
address enclosed in brackets, as shown below.

listen = [3ffe:b00:1:1::1]

To listen on all IPv6 interfaces, set the listen variable to [::] as shown below.

listen = [::]

22.8 Summary

The support, configuration and use of IPv6 in some open-source software is presented. In
most cases, IPv6 addresses are typed with enclosed brackets, as discussed in Section 4.2.3.
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Best Current Practices and Case
Studies

There are so many ways to build networks these days, with a large variety of available
technologies, that covering the interaction of all possible scenarios with IPv6 could fill a
whole book by itself. This chapter discuss the IPv6 Internet and related policies, generic
considerations for IPv6 deployment, and some scenarios for IPv6 deployment for single
nodes, home, enterprise and provider networks.

23.1 IPv6 Internet Address Space

The IPv6 Internet uses an address space allocated by the Internet Assigned Numbers Authority
(IANA) to the regional registries, which then allocates address space to the providers. The
IANA started to allocate address space in the 2001::/16 range [IANA, 2005]. IANA seems
to allocate incrementally, allocating 2002::/16 for the 6to4 addressing and started 2003::/16
in 2005. For future years, the IPv6 Internet uses the 2000::/8 address space.

23.2 IPv6 Address Policy

Address allocation made by the registries to the providers is based on an address policy.
Provider address space is then used to allocate address space to the enterprises, maximizing
aggregation in the global routing table.

The Internet Architecture Board (IAB) and the Internet Engineering Steering Group (IESG)
published recommendations on the IPv6 address allocation to sites [RFC3177], as listed in
Table 23.1.

Following these recommendations, the Regional Internet Registries (RIR) such as Réseaux
IP Européens (RIPE), Asia-Pacific Network Information Center (APNIC) and American
Registry for Internet Numbers (ARIN), mandated to assign address space to providers,
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Table 23.1 IAB recommendations on IPv6 addresses

Allocated size Usage

/48 For an end-site. This site can be a home network, or small and large
enterprises.

/64 For a single subnet, mostly mobile networks, such as personal area
networks. Could be a home network if there is no use of multiple subnets
in the future of this home network.

/128 For a single host, with a point-to-point interface, such as PPP.

adopted the policy [RIPE267].1 The RIRs give a /32 to providers satisfying the following
criteria:

• they must be a provider assigning address space to users and organizations: such a provider
is called a Local Internet Registry (LIR) in the address policy;

• they must not be an end-site;
• they must plan to provide IPv6 connectivity to organizations, by assigning them a /48;
• they must plan to assign 200 /48 to organizations within 2 years.

The allocation structure is shown in Figure 23.1.
Out of its /32 prefix received from its RIR, each provider in turn assigns /48 to end-sites.

The end-site has 16 bits for subnets, each subnet has 64 bits.
A provider may request additional space based on an assignment ratio [RFC3194]. A large

organization may request more than /48 if necessary.
The current policy allocates a /48 to home networks to allow 64K links within the home.

This is a nice boundary but would consume some significant address space if all homes are
connected and the providers are using the assignment ratio to get more address space from
registries. To alleviate this issue, a proposal [Narten, 2005] is currently discussed to allocate
a /56 prefix to home and small office networks.

The current address policy reinforces the aggregation of routes, which means that the IPv6
Internet BGP routing table should only have a small number of /32 routes, compared to the
IPv4 global routes. However, as discussed in Section 9.12, multihoming may change this
assumption in the future.

16 16 16 16 64

2XXX
Registry
assign

Provider
assign

Site
subnets Host part: interface identifier

Site receives a /48

Provider initial allocation is /32

Figure 23.1 Address policy structure

1 After multiple iterations of both IETF and RIRs.
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23.3 IPv6 Address Planning

From the address architecture and policy, a site gets a /48 and a link a /64. Given plenty of
address space, one can be lazy and just start assigning numbers incrementally. This section
discusses some considerations and best practice for IPv6 address plans.

23.3.1 Optimal Address Plans

A tier-1 provider receives a /32 from the registry. This provider might provide connectivity
to enterprises – to very large enterprises and to tier-2 providers – which need /32, /30 and
/40 respectively. However, the provider does not know in advance how many enterprises and
tier-2 providers will be connected to its network. Moreover, any of these organizations may
come back to the provider for additional address space. Therefore, careful address planning
enables the provider to manage these changes in the future, without the need to renumber
its customers.

An algorithm [RFC3531] was designed to make IPv6 address plans easier. It is an enhance-
ment of the algorithm [RFC1918] used for IPv4 address plans. It consists of using the
leftmost bits for the leftmost assignments, the rightmost bits for the rightmost assignments
and the center bits for the assignments in between.

For example, the tier-1 provider described above receives a /32 (3ffe:ffff::/32), which leaves
room for 16 bits of assignments, because the longest prefix to assign is a /48. The initial forecast
of customers for this provider is a maximum of 50 tier-2 providers. Obviously, this number can
be larger or smaller, depending on their success over time: 50 providers consume 6 bits.

To make the optimal address plan, the tier-1 provider starts assigning from the left bits of
its /32 and defines a virtual boundary (B1) after 6 bits, as shown in Figure 23.2.

Customers of the tier-1 provider start assigning with their center bits (bits C in Figure 23.2).
Tier-1 customers are assigning /48 (boundary B2) to their customers. The key benefit of this
method is that B1 and B2 boundaries may change later since the bits around the boundaries
are assigned last. Changing boundaries later keeps the assignment fully aggregated and does
not introduce multiple non-adjacent assignments.

Table 23.2 shows the first assignments that the tier-1 provider gives to its customers (C1,
C2, C3, C4, � � � ), starting from the left bits. While its defined boundary is /38 (/32 + 6), it
assigns /40 to its tier-2 provider customers.

Table 23.3 shows the first /48 assignments C2 gives to its own customers (C2C1, C2C2,
C2C3, � � � ), using center bits.

The key feature of this method is the ability to change the boundaries later on, while keep-
ing full aggregation and without renumbering. For example, if the bits near the B1 boundary
are not yet assigned, C2 can grow to 3ffe:ffff:4000::/39 or decrease to 3ffe:ffff:4000::/41
without any changes to the address plans, and the aggregation is kept intact. Similarly, C2C3
can grow to 3ffe:ffff:4030::/47 or decrease to 3ffe:ffff:4030::/49 without any changes.

B1 B2

left to right expand

LLXXXXXXXXCCXXXX

Figure 23.2 Left and center assignment of bits
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Table 23.2 Leftmost bits assignments

Assignments Bits to be assigned Resulting assignments

C1 100000 XXXXXXXXXX 3ffe:ffff:8000::/40
C2 010000 XXXXXXXXXX 3ffe:ffff:4000::/40
C3 110000 XXXXXXXXXX 3ffe:ffff:C000::/40
C4 001000 XXXXXXXXXX 3ffe:ffff:2000::/40

Table 23.3 Center bits assignments

C2 prefix Assignments Resulting assignments

C2C1 010000 0000010000 3ffe:ffff:4010::/48
C2C2 010000 0000100000 3ffe:ffff:4020::/48
C2C3 010000 0000110000 3ffe:ffff:4030::/48
C2C4 010000 0000001000 3ffe:ffff:4008::/48

Also, similar assignments can be applied within the /48 of an organization. For example,
when an organization has multiple sites and local assignment authorities, the same method
is used to ensure the full aggregation even when one site grows faster than forecasted.

This book Web site (http://www.ipv6book.ca) has a tool to create address plans using the
leftmost, rightmost or centermost assignments, as described in this section.

23.3.2 Numbering Links

From the addressing architecture (see Chapter 4), an IPv6 /64 prefix is assigned to each link.
A /64 is sufficient to accommodate any number of hosts on that link. Since the IPv4 address
space is limited, IPv4 subnet numbering implied some guessing on the future number of
hosts on each subnet of a network, which makes address plans more difficult and prone to
changes in the future.

When making an IPv6 address plan, each subnet can be numbered with any of the prefixes
available in the /48 space of the site. The only consideration is the aggregation of the prefixes
in the IGP routing table. If the numbering of the links is synchronized with the topology of
the network, then the best aggregation is achieved, which makes routing tables smaller and
creates more stability in the routing advertisements.

23.3.3 EUI-64 Considerations

EUI-64 in the host part embeds the hardware address of the interface. Whenever the hardware
has to change, then the IP address changes. IP addresses are often put in filters, in server
configuration, in network management stations and tools, etc.

Routers link-local addresses are used in most link-scope traffic, such as neighbor discovery,
routing protocols, mobileIPv6 and multicast. A change in the link-local address of a router
interface will break all these interactions until the processes are recovered. To avoid this
delay in recovery, link-local address of router interfaces could be statically assigned without
the use of the EUI-64. This enables the link-local address to remain stable even if the
hardware address changes on the interface.
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The role of the infrastructure of a server in a network means that the server’s IP addresses
are often statically written in the configuration files of other devices, in network management
tools, in security filters, etc. If the address uses EUI-64 and the interface is changed, then
the IPv6 address changes. A good practice is to assign static addresses to server interfaces
that are put statically in other devices configuration files. This is especially true for the DNS
servers IPv6 addresses.

23.3.4 Use of Unique Local Address Space

Unique local (Section 4.3.2.4) address space is used inside an organization to assign addresses
to local devices that are not reachable from the Internet. Printers, sensors and management
networks are examples of its use. These addresses are provider-independent and permanently
assigned, so they survive in the event of a change of provider. Moreover, they enable private
networks to be connected together as well as sites merging when companies merge.

Care must be taken to avoid the leaking of these addresses on the Internet. Border routers,
firewalls and gateways must not route any packets with unique local source or destination
address. DNS zone files containing unique local addresses must be of site scoped view.

The address plan for a unique-local /48 may use the optimal assignment method described
in Section 23.3.1.

23.4 Incremental Deployment

To have one successful application session between two nodes over IPv6, many blocks
between the two application programs must support IPv6. On the source node, the application
itself must be converted to IPv6 (see Chapter 21) and the operating system must support
IPv6. On the destination node, the application and the operating system must also be IPv6
ready. The whole network between the source and the destination node must also be routing
IPv6 packets. Figure 23.3 shows such deployment blocks.

IP (OS)

IP (OS) IP (OS)

Application

Application Application

Server C

Network

Host A Host B

Figure 23.3 IPv6 deployment blocks
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Until all these blocks are IPv6-ready, no single IPv6 packet can flow between the two
application instances. The upgrade of all applications, all operating systems and the whole
network and its services is often not possible, given the overall costs. Moreover, it is likely
that some applications, operating systems and network devices will never support IPv6.

The typical strategy to deploy IPv6 is incremental deployment, where blocks are upgraded
or converted one at a time. However, to get IPv6 trafic flowing between two IPv6-ready
nodes, the network must be upgraded as a whole or an overlay network must be provided to
connect the IPv6 nodes over the IPv4 network. As such, a typical deployment in enterprise
or provider networks uses a migration technique, as described in Chapter 16.

Additional infrastructure services must also be IPv6-enabled, such as the DNS service,
security services such as firewalls and VPN servers, network management systems, etc.

23.5 DNS Considerations

Putting IPv6 addresses in DNS is straightforward, as described in Chapter 8. However, care must
be taken on the timing to publish the IPv6 addresses as well as some specific IPv6 addresses.

23.5.1 Publishing the AAAA Record

When an IPv6-enabled node has an A record for its name, the administrator adds an AAAA
record for the same name. All the services on that node will be known by a name resolving
to an IPv4 or an IPv6 address. However, putting the AAAA record has some underlying
implications:

• The IPv6 address is configured and reachable.
• All the services on the node are IPv6 enabled.

If one of the service is not IPv6 enabled on the destination node, then the client node will
timeout and fallback to IPv4, which works, but introduces some delay for the user.

As discussed in Section 8.6, a dual-stack node usually first tries IPv6 by querying the
DNS for an AAAA record. If the AAAA record exists, an IPv6 connection is tried to the
destination. However, the destination node might not be reachable from the source node, for
example, when the source node is connected only to some private address space, or when it
uses transition techniques such as 6to4 with no reachability to the whole IPv6 Internet (for
example without a 6to4 relay). An IPv6 packet will be sent but never replied. After some
timeout, a fallback to IPv4 should happen. Depending on the implementation, the timeout
might be long and unacceptable to the user. These situations happen more for nomadic users
who are connecting to different networks; some might not reach some of the destinations.
To avoid this problem, only publish AAAA records of a node when it is reachable from
wherever all the nodes that need to reach it can be. Stated differently, the DNS resolution
scope should be the same as the IP reachability scope.

23.5.2 Publishing Special IPv6 Addresses

By default, the DNS resolution scope is global, which implies that only the globally scoped
addresses should be published in the DNS. Link-local and unique local addresses have
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smaller scopes. Link-local addresses should not be published in the DNS since they are
ambiguous out of the link. Unique local addresses might be published in the DNS if they
are only accessible from a private view, only available from the same scope as the unique
local address scope.

Temporary addresses (see Section 13.4), generated randomly and usually for a short period
of time, may be published in the DNS, since they are global by nature. However, given their
relative short lifetime, extra care must be taken to make sure the TTL of the AAAA record
is shorter or equal to the lifetime of the address.

23.5.3 TTL Use

When records are cached in intermediary DNS servers, they are deleted from the cache
when the TTL is expired. Given that the A and AAAA records are two different records, if
they have different TTLs, they will expire at different times in cache servers, which implies
incomplete answers to DNS clients from these servers. To avoid this situation, use the same
TTL for both A and AAAA records of the same name.

23.6 Routing Considerations

As discussed in Chapter 9, routing has not changed that much in IPv6. However, some hints
on topology and policies are discussed in this section.

23.6.1 Topologies

IS-IS only manages one link topology database for all layer 3 protocols. As discussed in
Section 9.7.2, if the IPv4 and IPv6 link topologies differs, then IS-IS does not work by
default. In such a case, verify the support of separate topologies in the IS-IS implementation
of your vendor.

23.6.2 Policies

Wrong routes should be filtered to avoid routing issues. Table 23.4 list a set of guidelines
[Blanchet, 2005].

23.7 Security Considerations

An important objective for an organization deploying IPv6 is to have at least the same
level of security as in its IPv4 infrastructure. Some considerations on the security model,
the filtering policies, the transition mechanisms and the special IPv6 addresses are now
discussed.

23.7.1 End-to-End-Model

The security model of IPv6 might be seen as changed from IPv4, since there are no NATs in
IPv6. The IPv4 NAT hides nodes not sending traffic to the external networks. Some security
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Table 23.4 Guidelines for IPv6 routing policies

Guideline Context Description

Filter link-local prefixes
(fe80::/16)

IGP, EGP Link-local addresses are of link-local scope and
should not appear in any routing table.

Filter unique-local prefixes
(fec0::/16)

IGP, EGP Unique-local addresses are deprecated and
therefore should not be used.

Filter unique-local prefixes
(fc00::/8, fd00::/8)

IGP If a site is using a unique-local prefix, only that
prefix should be announced. If the site is
connected to other sites using other unique-local
prefixes, only these prefixes should be
announced. All other unique-local prefixes
should not be announced.

Filter unique-local prefixes
(fc00::/7)

EGP A provider should filter all unique-local
prefixes.

Filter loopback and unspecified
(::/128, ::1/128)

IGP, EGP Loopback and unspecified addresses are of node
or link scope and should not appear in any
routing table.

Filter multicast (ff00::/8) in
unicast routing

IGP, EGP Multicast routes should not appear in unicast
routing tables.

Filter appropriate multicast
scopes in multicast routing

IGP, EGP Multicast addresses have scope bits. The scope
of the routes should be enforced at the borders,
in the multicast routing tables.

Filter IPv4-compatible
(::/96) and IPv4-mapped
(::FFFF:0:0/96) prefixes

IGP, EGP These addresses are deprecated and should not
be advertised.

Filter Default route (::/0) EGP A provider should not advertise the default route
to its peers, but may advertise it to its customers.

Undefined address space (out of
2000::/3)

IGP, EGP Undefined address space.

Filter long prefixes (> /48) EGP A provider should not advertise any prefix
longer than /48, which is a site prefix.

models in IPv4 are based on that assumption. However, peer-to-peer applications and traffic
have proven that NATs do not hide nodes if they wish to communicate, and because of the
NAT translation, are very difficult to manage and filter securely.

By avoiding translation, IPv6 filtering devices show all traffic with the right source and
destination addresses, enabling a full and non-blind approach to filtering the traffic.

As we have seen in recent years, filtering at the node level becomes increasingly important,
if not mandatory, due to the nomadic nature of computing and the proliferation of viruses
and attacks to nodes. IPv6 does not change that model, instead it enables a better filtering
of traffic, given the non-translation.

23.7.2 Policies

As discussed in Section 13.3, IPv6 ICMP filtering should not block some ICMP messages
for path MTU discovery to work. Extension headers filtering might pass packets with some
headers such as the ones used by MobileIP.
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23.7.3 Transition Mechanisms

Many IPv6 transition mechanisms use some form of IP-in-IP or IP over UDP-IP encapsula-
tion. Encapsulation requires the filtering gateways to be smarter in decoding the traffic to filter
correctly. If encapsulation techniques are used and traverse the security gateways, the gate-
ways should support inspection of encapsulated packets and should be properly configured.

23.7.4 Special Addresses

Temporary addresses (see Section 13.4) are random in order to provide anonymity. An
organization might consider anonymity as a problem in managing the nodes in the network.
Disabling the feature might be one way to manage this issue.

In an enterprise network, always prefer to use link-local or unique-local addresses to
associate nodes together, since they have a smaller scope than global adddresses.

23.8 Mail Considerations

Backup SMTP servers are configured using the DNS MX record with different levels of
preferences. When the primary server is down, e-mails are sent to the secondary server (with
the higher preference number in the MX record). When the primary server is backed up,
the secondary servers contact the primary to relay the hold e-mails. To ensure this relay
mechanism works, an IP protocol must be common between the primary and any of its
secondary servers [RFC3974]. For example, if the primary is only IPv4 and one secondary
is only IPv6, there is no common IP protocol between the two servers and the secondary
will not be able to relay the hold e-mails.

23.9 Deploying IPv6 and Connecting to the IPv6 Internet

From the beginning of the IPv6 deployment to the end of the IPv4 lifetime, IPv6 will be
deployed in multiple ways, far too many to describe here. However, we could group them
in three different categories as described in Table 23.5.

These three categories apply to both the enterprise and the provider networks. There are
other variations of these scenarios such as an IPv6-only and IPv4-only network, but only the
most likely cases are discussed further.

The following sections describe detailed scenarios starting with one isolated dual-stack
node, moving on to a mobile network and then to enterprise and provider networks.

23.9.1 Connecting a Single Node

A single node, where only one interface is configured, is connecting to the IPv6 Internet.
Table 23.6 describes the possible scenarios:

• a node on an IPv6-enabled link (cases 1,2,3);
• a node on a network that has some far IPv6 connectivity such as inside an enterprise or

in a provider network that has not fully upgraded to dual-stack (cases 4,5);
• a isolated node on the IPv4 Internet (cases 6,7,8).
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Table 23.5 Deployment scenarios

Deployment scenario Description Implementation

Dual-stack All devices and applications
are running IPv4 and IPv6.

All applications, operating systems and
network devices run IPv4 and IPv6 at the
same time.

IPv4 dominant Some devices of the network
are dual-stack but an
important part of the network
is still IPv4-only.

Some applications, operating systems and
network devices are running IPv4 and
IPv6. The IPv4-only part of the network is
using some IPv6 in IPv4 tuneling technique
to connect the IPv6 islands in the network.

IPv6 dominant Most devices on the network
are IPv6-only while some are
still dual-stack.

Most applications, operating systems and
network devices are running IPv6-only.
The rest of the network elements are
dual-stack. An IPv4 in IPv6 tunneling
technique is used to connect the IPv4
islands in the network.

Table 23.6 shows the scenarios and solutions related to the IPv6 connectivity that are
available to the single node.

23.9.2 Connecting a Mobile Node

As discussed in Chapter 11, a mobile node has a permanent address used for communi-
cations. While moving, the mobile node restores the reachability of its permanent IPv6
address. Two mobile solutions are available to provide that functionality: MobileIPv6 or
TSP tunnel broker. Table 23.7 lists the possible scenarios when the mobile node is visiting
a network.

23.9.3 Connecting a Home Network

The home networks include the use of a gateway which is implementing IPv4 NAT and
DHCP on the local network and has some WAN port connected typically to some broad-
band connection (see Table 23.8). If the home network is only one node, then refer to
Section 23.9.1. RFC3750 and RFC3904 are also good references.

23.9.4 Connecting a Small Network

Small networks are similar to home networks, however, the stability of the IPv6 address is
required to use or provide services. A typical scenario is a small remote office or a home
office. If a transition mechanism is used and the mechanism embeds the IPv4 address in the
IPv6 address, then the IPv4 address might change, which also makes the IPv6 address, and
prefix, change. These mechanisms cannot be used in this context.

The small network (see Table 23.9) has a gateway implementing IPv4 NAT and DHCP
on the local network.
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23.9.5 Enterprise and Military Networks

This section describes the deployment of IPv6 in enterprise networks, or more generally in
medium to large networks within a single administration domain. Such networks include the
military networks. The book Web site (http://www.ipv6book.ca) describes many scenarios.
RFC 4057 also provides a good reference [RFC4057].

Most of these networks target dual-stack networks with a staged and incremental deploy-
ment. This incremental deployment requires the use of some tunneling techniques as
described in Chapter 16. Some specific networks for vertical applications such as sensor
networks or military ones might use IPv6-only networks at the beginning and carry IPv4
legacy traffic within IPv6 packets.

23.9.5.1 Addressing

Many enterprise network managers like to use private address space for their network. IPv6
provides a globally unique private address space, unique-local, described in Section 4.3.2.3.
The enterprise should consider using this address space for its private addressing requirements
while at the same time use public address space for global connectivity. In this setup,
dual-stack hosts have one IPv4 private address and three IPv6 addresses: a link-local, a
unique-local and a global address. When the host talks to a private server within the enterprise
network, the host uses its private address to reach the server, by the source address selection
mechanism as described in Section 8.6. When the host talks to an external server on the IPv6
Internet, the host uses its global address to reach the server. Private address space usage
must be carefully implemented in the DNS infrastructure with private and public views, so
the private address space is not leaked to the public network.

An address plan should be designed for the enterprise network. Each link is allocated a
/64 prefix out of the enterprise /48 prefix. The address plan should take into consideration
the optimization method for address allocation [RFC3531], as discussed in Section 23.3.1.
A large enterprise has a substantial interest in optimizing the address plan to make it flexible
for the future growth of its network.

The enterprise should get a /48 prefix from its IPv6 provider. The enterprise network can
be first numbered using the unique local addressing. When the provider provides the /48
prefix to the enterprise, nodes receive the additional /64 prefix automatically on their link if
they are using autoconfiguration.

If the enterprise has multiple providers, a multihoming technique should be used as
described in Section 9.12.

23.9.5.2 Core and Distribution Routing

RIPng, OSPFv3 or IS-IS can be used for the enterprise IGP. As discussed in Chapter 9,
RIPng might not scale for medium to large networks. OSPFv3 is another routing process
which makes the two IP protocols independent in topology. IS-IS is IP protocol independent,
making a single topology database. If the IPv4 and IPv6 topologies are different, then care
must be taken with IS-IS, as discussed in Section 9.7.2.

If the core network cannot be upgraded to dual-stack but it already uses MPLS, then the
IPv6 over MPLS technique can be used.
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23.9.5.3 Access

If the access network cannot be upgraded to dual-stack, then the ISATAP or TSP tunnel
broker can be used to tunnel IPv6 over IPv4, as discussed in Sections 16.2.6 and 16.2.9
respectively. If NATs are present within the enterprise network, then ISATAP cannot be
used whereas TSP tunnel broker has NAT-traversal support.

23.9.5.4 Remote Access

For employees working at home, traveling or for remote offices, remote access to the
enterprise network from the IPv4 Internet can use the TSP tunnel broker as discussed in
Section 16.2.9. The TSP tunnel broker is located at the edge of the enterprise network,
behaving like a VPN server. The TSP client is located in the laptop or user computer or in
the home gateway, as shown in Figure 23.4.

23.9.5.5 Node, Server and Router Configuration

To fully use the IPv6 features, such as renumbering and reliability, nodes addresses should
not be configured manually but by autoconfiguration or if needed by DHCPv6, as described
in Chapter 5.

Given the IPv6 large address string with hexadecimal, the manual registration of node
names is difficult. Instead the dynamic DNS technique should be used.

Servers, routers and security gateways are infrastructure devices that should not rely
on other devices to be configured and they should not depend on the layer 2 address of
their network cards. Server, router and security gateway addresses should be configured
manually.

Since an interface can have multiple IPv6 addresses, the concept of secondary addresses
in IPv4 no longer exists in IPv6. For network management purposes, it is now easier to make
multiple addresses to make a separate network management control plane, to create virtual
networks or for other purposes.

Hotel IPv4 Internet IPv4 Enterprise IPv6

Hotel

TSP

IPv6 in UDP IPv4
NAT

IPv4

TB

IPv6

Enterprise

Figure 23.4 Enterprise remote access with TSP tunnel broker
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23.9.6 Provider Networks

This section gives some basic hints for provider networks. The book Web site (http://
www.ipv6book.ca) describes many scenarios. RFC 4029 also provides a good reference
[RFC4029].

23.9.6.1 Addressing

Under the current address policy, discussed in Section 23.2, a provider initially receives a
/32 from the registry. The provider assigns /48 to each of its customers, enterprise or home
network. For the downstream providers, the assignment by the upstream provider could be
any prefix between /32 and /48. An address plan should be designed in advance to get the
maximum flexibility. The address plan should highly take into consideration the optimization
method for address allocation [RFC3531], as discussed in Section 23.3.1. A provider has a
substantial interest in optimizing the address plan to make it flexible for the future growth
of its network.

23.9.6.2 Core, Distribution and Exchange Routing

A good architecture for the core and distribution networks is to run dual-stack networks,
where all routers have all their interfaces configured for IPv4 and IPv6.

If an important part of the core and distribution networks is IPv4-only and runs MPLS,
then the IPv6 in MPLS solution enables the incremental upgrade of edge routers as IPv6
demand increases, without the upgrade of the core.

Peering at exchange points can be done with dedicated IPv6 routers or dual-stack routers.
As the BGP transport is independent of the address families of the routes, a single BGP
peering can exchange both IPv4 and IPv6 routes. The new version of the Route Policy Spec-
ification Language (RPSL), named RPSLng [RFC4012], should be considered for managing
IPv4 and IPv6 BGP peering.

23.9.6.3 Access

When the access network cannot be upgraded to dual-stack, the TSP tunnel broker, as
described in Section 16.2.9, should be considered.

23.9.7 Mobile Networks

Mobile networks should consider using the enhancement of the MobileIPv6 protocol, NEMO,
as discussed in Section 11.10.3, or the TSP tunnel broker, as discussed in Section 16.2.9.

23.9.8 IPv6-only Networks

IPv6-only networks with the need to carry IPv4 traffic may deploy an IPv6-only routing
infrastructure while carrying IPv4 packets with IPv6 tunnels. The DSTM mechanism, as
described in Section 17.1.3, with DHCPv6 or TSP should be considered.



Best Current Practices and Case Studies 407

23.10 Summary

This chapter bundles together some best practices and deployment scenarios for single nodes,
home, mobile, enterprise and provider networks.
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Conclusion

The purpose of this book is to provide you the best knowledge of IPv6. In chapter 1,
I first tried to convince you of its benefits. Chapters then describe the various IPv6 related
specifications. Chapter 23 gives advice on deployment.

I spent a lot of time trying to make this the best IPv6 book, although I know that it is far
from perfect. This book has a companion Web site (http://www.ipv6book.ca) to help keep
the book up to date. Please refer to this Web site.

I hope you liked this book. I enjoyed writing it and learned a lot.
Marc.

Migrating to IPv6: A Practical Guide to Implementing IPv6 in Mobile and Fixed Networks Marc Blanchet
© 2006 John Wiley & Sons, Ltd
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Quick Reference

A quick reference of key useful information for daily work is available on the book Web
site (http://www.ipv6book.ca). It contains summarized information such as IPv6 headers,
address assignments, neighbor cache summary, API structures and function calls, commands
and configuration of various operating systems, etc.

Migrating to IPv6: A Practical Guide to Implementing IPv6 in Mobile and Fixed Networks Marc Blanchet
© 2006 John Wiley & Sons, Ltd
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Header fields

Order Name Size
(bits)

1 Version 4
2 Traffic Class 8
3 Flow Label 20
4 Payload Length 16
5 Next Header 8
6 Hop Limit 8
7 Source Address 128
8 Destination Address 128

Common Next Header Values

Value Description
0 Hop-by-Hop Option
6 Transmission Control Protocol

17 User Datagram Protocol
43 Routing Header
44 Fragment Header
50 Encapsulation Security Payload
51 Authentication Header
59 No Next Header
60 Destination Options

States of the neighbor cache

State Description
incomplete NS sent. no NA received yet.
reachable NA received, not yet

expired.
state NA received, expired. Next

is to send NS again.
delay Intermediate between stale

and probe states.
probe NS is being sent.

Some ICMPv6 messages

Type Definition
1 Destination Unreachable
2 Packet Too Big
3 Time Exceeded
4 Parameter Problem

128 Echo Request
129 Echo Reply
130 Multicast Listener Query
131 Multicast Listener Report
132 Multicast Listener Dore
133 Router Solicitation
134 Router Advertisement
135 Neighbor Solicitation
136 Neighbor Advertisement
137 Redirect
138 Router Renumbering
139 ICMP Node Information Query
140 ICMP Node Information Response
141 Inverse Neighbor Solicitation
142 Inverse Neighbor Advertisement
143 Version 2 Multicast Listener Report
144 Home Agent Address Discovery Request
145 Home Agent Address Discovery Reply
146 Mobile Prefix Solicitation
147 Mobile Prefix Advertisement
148 Certification Path Solicitation
149 Certification Path Advertisement
151 Multicast Router Advertisement
152 Multicast Router Solicitation
153 Multicast Router Termination



Types of IPv6 addresses

Type Structure (16 bit boundaries)

Loopback 0 0001
Unspecified 0
IPv4-mapped 0 ffff <IPv4 addr>
Unicast global <provider prefix> subnet <interface identifier>
6to4 2002 <ipv4 addr> subnet <interface identifier>
Unique-local fd00 0 subnet <interface identifier>
Link-local fe80 0 <interface identifier>
Multicast ff<ls> <multicast group>

Prefix based Multicast ff<ls> 00PL <prefix> <group>

Solicited-node Multicast ff02 0 0001 ff <right 24bits>

Multicast address permanent group bit

Value of L Value of L Group persistence
(binary) (hex)

0000 0 Permanent
0001 1 Temporary, not based

on a network prefix
0011 3 Temporary, based on a

network prefix

Multicast address scope bits

Value of S Value of S Scope
(binary) (hex)

0001 1 Interface
0010 2 Link
0011 3 Subnet
0100 4 Admin
0101 5 Site
1000 8 Organization
1110 E Global

Some Multicast Reserved Addresses

Address Scope Description
FF01::1 Interface All interfaces
FF01::2 Interface All routers
FF02::1 Link All nodes
FF02::2 Link All routers
FF02::4 Link DVMRP routers
FF02::5 Link OSFP routers
FF02::6 Link OSPF designated routers
FF02::9 Link RIP routers
FF02::B Link MobileIP home agents
FF02::D Link PIM routers
FF02::1:2 Link DHCP agents
FF02::1:FFXX:XXXX Link Solicited-node
FF05::2 Site Routers
FF05::1:3 Site DHCP servers
FF05::1:4 Site DHCP agents
FF05::1:1000-13FF Site Service location
FF0X::101 Any Network Time Protocol
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