
ATTACKING IPV6 IMPLEMENTATION
USING FRAGMENTATION
Antonios Atlasis, antonios.atlasis@cscss.org
Centre for Strategic Cyberspace + Security Science

• Independent IT Security analyst and researcher.
• Over 20 years of diverse Information Technology

experience.
• Instructor and software developer, etc.
• Hobbies: bug-finding.

• Recently joined the Centre for Strategic Cyberspace
+ Security Science non-profit organisation.

• E-mail: antonios.atlasis@cscss.org

Bio

Presentation Outline

• Some background regarding fragmentation in
IPv4 and its consequences.

• Fragmentation in IPv6.
• Examination of fragmentation issues in IPv6

implementation against some of the most
popular OS – Examples.

• Conclusions

Some Background

• Usually a normal event.
• Required when the size of the IP datagram is

bigger than the Maximum Transmission Unit
(MTU) of the route that the datagram has to
traverse (e.g. Ethernet MTU=1500 bytes).

• Packets reassembled by the receiver.

IP Fragmentation

• Share a common fragment identification
number (which is the IP identification number
of the original datagram).

• Define its offset from the beginning of the
corresponding unfragmented datagram, the
length of its payload and a flag that specifies
whether another fragment follows, or not.

• In IPv4, this information is contained in the
IPv4 header.

Fragmentation in IPv4

IPv4 Header

0 1 2 3 4 5 6 7 8 9 1
0

1 2 3 4 5 6 7 8 9 2
0

1 2 3 4 5 6 7 8 9 3
0

1

Verson IHL Type of Service Total Length

Identification x D M Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

IP Options (optional)

Don't FragmentDon't Fragment More Fragments to Follow

RFC 791

IPv4 Fragmentation

IPv4
header

Embedded protocol plus payload
(e.g.3200 bytes)

Unfragmented packet

Fragment 1IPv4
header

Fragment 2IPv4
header

Fragment 3IPv4
header

MF=1,
offset =0
length=1480

MF=1, Offset=1480,
length=1480

MF=0
Offset=2960
Length=240

e.g. MTU: 1500 bytes (Ethernet)

(some of the)
Consequences of malformed

fragmentation

• “Insertion, Evasion and Denial of Service:
Eluding Network Intrusion Detection”, by
Thomas H. Ptacek, Timothy N. Newsham, ,
Secure Networks, Inc. , January, 1998.

• Three classes of attacks were defined against
IDS/IPS:
– insertion,
– evasion and
– Denial of Service attacks.

When it all started

• When an IDS accepts a packet that the end-
system rejects.

• An attacker can use this type of attacks to
defeat signature analysis and to pass
undetected through an IDS.

Insertion

Insertion

IDS

Target

Signature content: EXPLOIT

E X P L O I TRE X P LO R I T X

Ouch!

The target rejects character “R”, which IDS
accepts; this breaks the IDS signature.

• When an end-system accepts a packet that an
IDS rejects.

• Such attacks are exploited even more easily
that insertion attacks.

Evasion

Evasion

IDS

Target

Signature content: EXPLOIT

E X P L O I TE X P LO ITX

Ouch!

The target accepts character “O”, which IDS
rejects; this breaks the IDS signature.

• Disordered arrival of fragments.
• IDS flooding by partial fragmented datagrams.
• Selective dropping of old and incomplete

fragmented datagram.
• Overlapping fragments.
• IP Options in Fragment Streams.

Fragmentation Attacks

What Changes in IPv6
(regarding fragmentation)

• Fragmentation fields (offset, D and M bits)
have been totally removed.

• IPv6 header length is limited to 40 bytes, BUT
the use of Extension Headers has been
introduced.

• These IPv6 Extension Headers add additional
functionality.

In IPv6

• IPv6 header
• Hop-by-Hop Options header
• Destination Options header
• Routing header
• Fragment header
• Authentication header
• Encapsulating Security Payload header
• Destination Options header (processed only by

the receiver).
• Upper-layer header

IPv6 Extension Headers

This is the recommended order
by RFC2460

•

•

• M: More Fragment bit.

• Fragment offset: Offset in 8-octet units.

• The is no DF (Don't Fragment) bit, because in IPv6 the fragmentation is
performed only by the source nodes and not by the routers along a
packet's delivery path.

Each fragment, except possibly the last one, is an integer multiple of 8
octets long.

IPv6 Fragment Header

0 1 2 3 4 5 6 7 8 9 1
0

1 2 3 4 5 6 7 8 9 2
0

1 2 3 4 5 6 7 8 9 3
0

1

Next Header Reserved Fragment Offset Res M

Identification

IPv6 Fragmentation

Unfragmentable
part

Fragmentable part

Unfragmented packet

Fragment 1

IPv6 header + some of
the extension headers

Unfragmentable
part

Fragment
Header

Fragment 2Unfragmentable
part

Fragment
Header

Fragment 3Unfragmentable
part

Fragment
Header

• IPv6 attempts to minimise the use of
fragmentation by:
– Minimising the supported MTU size to 1280 octets

or greater. If required, link-specific fragmentation
and reassembly must be provided at a layer below
IPv6.

– Allowing only the hosts to fragment datagrams.

Recommended Handling of IPv6
Fragmentation

• RFC5722 recommends that overlapping
fragments should be totally disallowed:
– when reassembling an IPv6 datagram, if one or

more of its constituent fragments is determined
to be an overlapping fragment, the entire
datagram (and any constituent fragments,
including those not yet received) must be silently
discarded.

Recommended Handling of IPv6
Fragmentation

Let's play a bit!

Our Targets

Ubuntu 10.04.3 LTS
2.6.32-38 i386
IPv6: fec0::2/64

Ubuntu 11.10
3.0.0-15 i386
IPv6: fec0::3/64

FreeBSD 8.2-p3
i386
IPv6: fec0::4/64

OpenBSD 5.0
i386
IPv6: fec0::5/64

Windows 7
i386
IPv6: fec0::6/64

FreeBSD 9
amd64
IPv6: fec0::7/64

Our Attacking Tool

• Scapy
– A powerful interactive packet manipulation

program.
– http://www.secdev.org/projects/scapy/

http://www.secdev.org/projects/scapy/

The Used Protocol for our Testing
Purposes

• As an upper-layer protocol, the ICMPv6 was
used (Echo Request type):
– It is the simplest protocol that can invoke a

response.
– It also echoes back the payload of the Echo

Request packet

• Hence, using unique payload per packet, the
fragmentation reassembly policy of the target
can be easily identified.

Using Tiny Fragmentation
(without overlapping)

Using of Small Fragments
tim

e

8 bytes

8 bytes

IPv6 net packet payload per fragment

Payload of fragment 1
= ICMPv6 Header

Payload of fragment 2
= payload of ICMPv6

The Code

#!/usr/bin/python
from scapy.all import *
#IPv6 parameters
sip="fec0::1"
dip="fec0::2"
conf.route6.add("fec0::/64",gw="fec0::1")
payload1="AAAAAAAA"
ipv6_1=IPv6(src=sip, dst=dip, plen=16)
icmpv6=ICMPv6EchoRequest(cksum=0x7d2b)
#Fragment
frag1=IPv6ExtHdrFragment(offset=0, m=1, id=502, nh=58)
frag2=IPv6ExtHdrFragment(offset=1, m=0, id=502, nh=58)
packet1=ipv6_1/frag1/icmpv6
packet2=ipv6_1/frag2/payload1
send(packet1)
send(packet2)

IPv6 header payload: 16 bytes
8 bytes fragment header + 8 bytes
embedded protocol

Offset: 1 octet
 no overlapping

Demo: tiny fragmentation

Results

• All of the tested OS sent an echo reply to the
sender.

• Hence, all major OS accept fragments as small
as 56 bytes (including IPv6 header = 40 bytes
IPv6 Header + 8 bytes Fragment Header + 8
bytes of ICMPv6 Header).

So, what's the big deal?

Tiny Fragmentation Consequences

• In IPv4, the embedded protocol's header, e.g.
TCP (or at least a part of it) has to be in the 1st
fragment.

• Firewall evasions could occur if a subsequent
fragment would overwrite the TCP header
(e.g. the destination port, the SYN/ACK flags,
etc.)

• To this end, RFC 1858 defined that:
 IF FO=1 and PROTOCOL=TCP then DROP PACKET.

Tiny Fragmentation Consequences
in IPv6

• At least one extension header can follow the
Fragment Header: The Destination header.

• But, the total length of the Destination
Options header can reach 264 bytes (RFC
2462).

• Hence, using 8-bytes fragments, we can split
the Destination Option headers to 33
fragments!

What does this mean?

• The layer-4 protocol header will start at the
34th fragment!

• And unless Deep Packet Inspection (=
complete IP datagram reassembly before
forwarding it), this can lead to firewall
evasion, without having to overlap any
fragments (as it was the case in IPv4)!

What does this mean?

• This number can increase if we increase the
number of the used extension headers that
follow the fragment extension header
(although not recommended by RFC 2460,
but, who cares?).

Creating a very simple fragmentation
overlapping

Testing Fragmentation Overlapping

Row 1 Row 2 Row 3 Row 4
0

2

4

6

8

10

12

Column 1

Column 2

Column 3

tim
e

IPv6 net packet payload per fragment

Payload of fragment 1

Payload of fragment 2overlapping

(part of) the code

payload1 = ''
for i in range(1272):

payload1 = payload1 + 'A'
payload2 = ''
for i in range(1280):

payload2 = payload2 + "B"
ipv6_1=IPv6(src=sip, dst=dip, plen=1288)
icmpv6=ICMPv6EchoRequest(cksum=0x5610, data=payload1)
#Fragment
frag1=IPv6ExtHdrFragment(offset=0, m=1, id=511, nh=58)
frag2=IPv6ExtHdrFragment(offset=1, m=0, id=511, nh=58)
packet1=ipv6_1/frag1/icmpv6
packet2=ipv6_1/frag2/payload2
send(packet1)
send(packet2)

Correct offset = 160

8 bytes fragment header +
1280 bytes of payload = 160
octets of payload

Demo: Simple fragmentation
overlapping

Results

• FreeBSD, Ubuntu 11.10 and Windows 7 were
immune to this attack.

• Ubuntu 10.04 and OpenBSD were susceptible
to these attacks.
– These two OS accept the fragmentation

overlapping with the first fragment overwriting
the second one.

and so?

Row 1 Row 2 Row 3 Row 4
0

2

4

6

8

10

12

Column 1

Column 2

Column 3

• Acceptance of fragmentation by two of our
targets implies that this attack can be used:
– For OS fingerprinting purposes
– For IDS Insertion / Evasion purposes (depending

for example on whether Ubuntu 10.04 is used as
the host OS of the IDS or as a guest OS).

• The fact that the 1st fragment overlaps the
second, seems that on its own cannot be
exploited for firewall evasion purposes.

The Paxson/Shankar Model

The Paxson/Shankar Model

• At least one fragment that is wholly overlapped
by a subsequent fragment with an identical
offset and length.

• At least one fragment that is partially
overlapped by a subsequent fragment with an
offset greater than the original.

• At least one fragment this is partially
overlapped by a subsequent fragment with an
offset less than the original.

The Paxson/Shankar Model

Fragment Reassembly Methods

• BSD favors an original fragment EXCEPT when the
subsequent segment begins before the original segment.

• BSD-right favors the subsequent segment EXCEPT when
the original segment ends after the subsequent segment,
or begins before the original segment and ends the same
or after the original segment.

• Linux favors the subsequent segment EXCEPT when the
original segment begins before, or the original segment
begins the same and ends after the subsequent segment.

• First favors the original fragment.

• Last favors the subsequent fragment.

• BSD policy: 111442333666

• BSD-right policy: 144422555666

• Linux policy: 111442555666

• First policy: 111422333666

• Last policy: 144442555666

The Paxson/Shankar Model

(part of) the Code
payload1 = "AABBCCDD"
payload2 = "BBAACCDD"
...
payload6 = "AADDBBCC"
...
#Fragments
icmpv6=ICMPv6EchoRequest(cksum=csum, data=payload1+payload1)
frag1=IPv6ExtHdrFragment(offset=0, m=1, id=myid, nh=58)
frag2=IPv6ExtHdrFragment(offset=4, m=1, id=myid, nh=58)
frag3=IPv6ExtHdrFragment(offset=6, m=1, id=myid, nh=58)
frag4=IPv6ExtHdrFragment(offset=1, m=1, id=myid, nh=58)
frag5=IPv6ExtHdrFragment(offset=6, m=1, id=myid, nh=58)
frag6=IPv6ExtHdrFragment(offset=9, m=0, id=myid, nh=58)
ipv6_1=IPv6(src=sip, dst=dip, plen=2*8+8+8)
ipv6_1=IPv6(src=sip, dst=dip, plen=2*8+8)
packet2=ipv6_1/frag2/(payload2+payload2)
ipv6_1=IPv6(src=sip, dst=dip, plen=3*8+8)
packet3=ipv6_1/frag3/(payload3+payload3+payload3)
ipv6_1=IPv6(src=sip, dst=dip, plen=4*8+8)
packet4=ipv6_1/frag4/(payload4+payload4+payload4+payload4)
ipv6_1=IPv6(src=sip, dst=dip, plen=3*8+8)
packet5=ipv6_1/frag5/(payload5+payload5+payload5)
ipv6_1=IPv6(src=sip, dst=dip, plen=3*8+8)
packet6=ipv6_1/frag6/(payload6+payload6+payload6)

Demo: The Paxson/Shankar Model

Received ICMPv6 Responses

• Ubuntu 10.04

• OpenBSD 5

Results

• FreeBSD, Windows 7 and Ubuntu 11.10 are
immune to these attacks.

• Ubuntu 10.04 and OpenBSD are susceptible to
these attacks.
– OpenBSD: BSD reassembly policy
– Ubuntu 10.04: Linux reassembly policy

So, up to now it seems that linux kernel
2.6.40, FreeBSD 8.2/9 and Windows 7

are immune to fragmentation
overlapping attacks, right?

A simple 3-packet model where the
parameters of the one fragment are

varied.

A simple 3-packet model

Brief summary of Ubuntu 10.04
responses

• The non-favoured packets are not discarded
completely but they trimmed.

• The Linux reassembly policy was confirmed
with one exception (when the 2nd fragment has
a 0 offset and M=1).

• Three notable behaviours are when atomic
fragments overlap with other. In these cases
we have two separate responses from the
target.

Sample of Ubuntu 10.04 Responses

Sample of Ubuntu 10.04 Responses

Sample of Ubuntu 10.04 Responses

Atomic fragments

Demo:
Two responses from Ubuntu 10.04 in
case of atomic fragments overlapping

with others

Brief summary of OpenBSD 5
responses

• Follows the BSD policy.
• The non-favoured packets are not discarded

completely but they trimmed.
• No exceptions (e.g. in case of atomic

fragments).

Sample of FreeBSD Responses

Brief summary of FreeBSD
responses

• It discards the overlapping fragment (as it
should), but it doesn't discard the previous
and the subsequent ones (as it also should,
according to RFC5722).

• This is the reason why in almost all the cases,
fragments 1 and 3 are accepted (which do not
overlap).

Ubuntu 11.10 Responses

• Two responses when the one is an atomic fragment (offset =
M = 0).

• Should be discarded silently, according to the RFC 5722.

Windows 7 Responses

• Responses when M=1 and the second fragment overlaps only
with the first one, partially or completely, but without
exceeding the last byte of the first offset.

• It seems that they complies with RFC 5722 EXCEPT when only
the 1st fragment is overlapped.

Windows 7 Responses

• It seems that Windows 7 comply with RFC 5722 (discarding all
the fragments, when overlapping occurs), unless only the 1st
fragment is overlapped.

Demo:
Ubuntu 11.10 and Windows 7 testing

Reversing the sending order of the
fragments

Ubuntu 11.10 responses for
reverse sending order

• More responses are received than when the normal sending
order is used.

– When atomic fragments overlap with non-atomic ones.

– In most of the other cases, only the overlapping fragment
is discarded.

Sample of Ubuntu 11.10 Responses
when reversing the order

Windows 7 Responses when
reversing the order

• Responses when fragments 2 and 3
completely and exactly overlap, in which case
Windows 7 considering them probably as
repeated packets.

Some final tests

Fragmentation Overlapping
Sending Double Packets

tim
e

1280 bytes

1280 bytes
8-octets bytes offset

Payload of fragment 1

Payload of fragment 2

1280 bytes
Payload of fragment 2

1280 bytes

Payload of fragment 1

IPv6 net packet payload per fragment

(part of) the code

ipv6_1=IPv6(src=sip, dst=dip, plen=1288)
icmpv6=ICMPv6EchoRequest(cksum=0xb47b, data=payload1)#fec0::3
#Fragment
frag1=IPv6ExtHdrFragment(offset=0, m=1, id=712, nh=58)
frag2=IPv6ExtHdrFragment(offset=8, m=0, id=712, nh=58)
frag3=IPv6ExtHdrFragment(offset=160, m=0, id=712, nh=58)
packet1=ipv6_1/frag1/icmpv6
packet2=ipv6_1/frag2/payload2
packet3=ipv6_1/frag3/payload2
send(packet1)
send(packet2)
send(packet3)
send(packet1)

Results

• Ubuntu 10.04 and OpenBSD 5 send two responses
back.

• The two FreeBSDs send back a response even if the
packet numbered 4 is not sent, showing again that
they just discard the overlapping fragment.

• Ubuntu 11.10 and Windows 7 do send a response
only if all the four packets are sent (including the last
one, with the 0 offset).

• If the packet numbered 1 is not sent, none of the
three sends back a response.

Demo:
Sending double overlapping packets

Conclusions

Conclusions (1/5)

• All the tested OS accepted really tiny
fragments (e.g. two octets longs) which,
under specific circumstances (i.e. when deep-
packet inspection is not performed) and
especially when combined with the use of
other IPv6 extension headers, can lead to
firewall evasion.

• None of the tested OS is RFC 5722 compliant.

Conclusions (2/5)

• Ubuntu 10.04 LTS (using linux kernel 2.6.32)
and OpenBSD 5 were proven the most
susceptible to fragmentation overlapping
attacks among the tested OS, each one
following the corresponding well-known
reassembly policies (Linux and BSD
respectively).

Conclusions (3/5)

• FreeBSD 8.2/9 discards any overlapping
fragments appearing to have the most
consistent behaviour.

• Although this is a very good practice, it does
not fully comply with RFC 5722 which suggest
the rejection of any constituent fragments
too (including the ones not yet received).

Conclusions (4/5)

• The two Ubuntu send two responses back
when atomic fragments overlap with non-
atomic ones.

• The behaviour of Ubuntu 11.10 seems to
deteriorate significantly when the sending
order of the fragments is reversed.

• Windows 7, although seem to have the fewer
issues, there are cases that they also accept
overlapping fragments.

Conclusions (5/5)

• The impact of these issues, since it varies
between the tested OS, starts from OS
fingerprinting and can be extended, if used
properly, to IDS insertion / evasion and in
some cases, even to firewall evasions.

• OS vendors need to create fully RFC compliant
products.

Please complete the speakers'
feedback survey forms.

Thank you!
antonios.atlasis@cscss.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

