
Vulnerability 
assessment

Tools & methodology

WIP report #1

Chariton Karamitas 
huku@census-labs.com

https://github.com/huku-

Monday, September 8, 14

mailto:huku@census-labs.com
mailto:huku@census-labs.com
https://github.com/huku-
https://github.com/huku-


Dafuq?
• What?

• Choose target software and evaluate its ability to handle 
specially crafted inputs

• How?

• Read available documentation and try to understand how it 
works

• Fuzz the hell out of it 

• Read or reverse its code, locate input processing points and 
look for vulnerabilities (manual way)

• Apply formal methods and try to automatically find 
vulnerabilities (automated way)

Monday, September 8, 14



Doin’ it like a pro
• Doing it for hobby vs. doing it professionally

• Hobby?

• Personal time management

• Look for vulnerabilities in whatever you want to own

• Professionally?

• Strict deadlines; customer expects certain (impressive and 
persuading) results

• Be the customer’s little bitch and look for vulnerabilities in 
whatever he wants to own :-P

• ...maybe he wants to own you :)

Monday, September 8, 14



Problem?
• It takes time

• Time = $$.$$$ :)

• We need...

• ...a set of methodologies to follow

• ...a set of tools to use

Monday, September 8, 14



Methodology I
• Setup the target software in a fully updated working 

environment (hardware, OS, software dependencies, 
configurations)

• Start using it, observe how it works and try to understand why 
it works that way

• Develop scenarios and use cases

• Determine input formats and collect input samples

• Crawl the web

• Manually construct test cases

Monday, September 8, 14



Methodology II
• Fuzz the target using the collected test cases (plenty of tools & 

techniques)

• Use tools targeted at manual analysis to understand software 
internals and design choices made by the developers

• Got source? OpenGrok or any other cross referencing system

• Got binary? IDA Pro, metasm, whatever...

• Locate input sources and obscure features

• Try to think what the developer may have done wrong and 
make some $.$$$, $$.$$$ or even $$$.$$$ :)

• Use tools’ scripting capabilities to automate simple tasks

Monday, September 8, 14



Methodology III
• Convert binary & source code to IR suitable for automated 

analysis

• Model the program using some theory

• Try to prove the existence of certain properties in the 
program

• Vulnerability classes can be modeled

• Don’t try to design a fully automated system

• Build software that will help you during manual 
analysis

Monday, September 8, 14



Tools
• Step #1 - Pick a correct & useful disassembler

• Endless choices (most of them incomplete)

• Best choices: XED2 (Intel) & capstone (multiple 
architectures)

• Focus on x86 and AMD64

• Imo this is the most important step

• Step #2 - pyxed

• Python bindings for Intel’s XED2

• https://github.com/huku-/pyxed

Monday, September 8, 14

https://github.com/huku-/pyxed
https://github.com/huku-/pyxed


Tools
• Hm... pyxed? What’s next?

• CFG (almost done) & HTML5 based interactive graphs (easy)

• Dominator trees

• Loop analysis

• Program slicing

• Taint analysis

• Binary to IR translator

• REIL, ELIR, ESIL, LLVM, VEX?

Monday, September 8, 14



Questions?

Monday, September 8, 14


