Vulnerability
assessment

Tools & methodology

WIP report #1

Chariton Karamitas
huku@census-labs.com
https://github.com/huku-

eeeeeeeeeeeeeeeeeeee

mailto:huku@census-labs.com
mailto:huku@census-labs.com
https://github.com/huku-
https://github.com/huku-

Dafuq?

® What?

® (Choose target software and evaluate its ability to handle
specially crafted inputs

® How?

® Read available documentation and try to understand how it
works

® TFuzz the hell out of it

® Read or reverse its code, locate input processing points and
look for vulnerabilities (manual way)

® Apply formal methods and try to automatically find
vulnerabilities (automated way)

Monday, September 8, 14

Doin’ it like a pro

® Doing it for hobby vs. doing it professionally
® Hobby?
® Personal time management

® Look for vulnerabilities in whatever you want to own

® Professionally?

® Strict deadlines; customer expects certain (impressive and
persuading) results

® Be the customer’s little bitch and look for vulnerabilities in
whatever he wants to own :-P

® ..maybe he wants to own you :)

Monday, September 8, 14

Problem?®

® It takes time
® Time=3$$.$$%:)
® We need...

® . .a set of methodologies to follow

® . .asetoftools touse

Monday, September 8, 14

Methodology I

® Setup the target software in a fully updated working
environment (hardware, OS, software dependencies,

configurations)

® {Start using it, observe how it works and try to understand why
it works that way

® Develop scenarios and use cases
® Determine input formats and collect input samples
® (Crawl the web

® NManually construct test cases

Monday, September 8, 14

Methodology 11

® FHuzz the target using the collected test cases (plenty of tools &
techniques)

Use tools targeted at manual analysis to understand software
internals and design choices made by the developers

Got source? OpenGrok or any other cross referencing system
Got binary? IDA Pro, metasm, whatever...

Locate input sources and obscure features

Try to think what the developer may have done wrong and

make some $.$$3$, $35.$$$ or even $$$.$$$)

Use tools’ scripting capabilities to automate simple tasks

Monday, September 8, 14

Methodology 111

® (Convert binary & source code to IR suitable for automated
analysis

® NModel the program using some theory

® Try to prove the existence of certain properties in the
program

® Vulnerability classes can be modeled

® Don'’t try to design a fully automated system

® Build software that will help you during manual
analysis

Monday, September 8, 14

Tools

® Step #1 - Pick a correct & useful disassembler
® Endless choices (most of them incomplete)

® Best choices: XED2 (Intel) & capstone (multiple
architectures)

® Focus on x86 and AMDG4

® Imo this is the most important step
® Step #2 - pyxed

® Python bindings for Intel’s XED2

® https://github.com/huku-/pyxed

Monday, September 8, 14

https://github.com/huku-/pyxed
https://github.com/huku-/pyxed

Tools

® Hm... pyxed? What’s next?

CFG (almost done) & HTMLS5 based interactive graphs (easy)
Dominator trees

Loop analysis

Program slicing

Taint analysis

Binary to IR translator

¢ REIL, ELIR, ESIL, LLVM, VEX?

Monday, September 8, 14

Questions?

eeeeeeeeeeeeeeeeeeee

